714 research outputs found

    Emergent SO(5)SO(5) Symmetry at the N\'eel to Valence-Bond-Solid Transition

    Get PDF
    We show numerically that the `deconfined' quantum critical point between the N\'eel antiferromagnet and the columnar valence-bond-solid, for a square lattice of spin-1/2s, has an emergent SO(5)SO(5) symmetry. This symmetry allows the N\'eel vector and the valence-bond-solid order parameter to be rotated into each other. It is a remarkable 2+1-dimensional analogue of the SO(4)=[SU(2)×SU(2)]/Z2SO(4)= [SU(2)\times SU(2)]/Z_2 symmetry that appears in the scaling limit for the spin-1/2 Heisenberg chain. The emergent SO(5)SO(5) is strong evidence that the phase transition in the 2+1D system is truly continuous, despite the violations of finite-size scaling observed previously in this problem. It also implies surprising relations between correlation functions at the transition. The symmetry enhancement is expected to apply generally to the critical two-component Abelian Higgs model (non-compact CP1CP^1 model). The result indicates that in three dimensions there is an SO(5)SO(5)-symmetric conformal field theory which has no relevant singlet operators, so is radically different to conventional Wilson-Fisher-type conformal field theories.Comment: 4+epsilon pages, 6 figure

    Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models

    Get PDF
    Numerical studies of the N\'eel to valence-bond solid phase transition in 2D quantum antiferromagnets give strong evidence for the remarkable scenario of deconfined criticality, but display strong violations of finite-size scaling that are not yet understood. We show how to realise the universal physics of the Neel-VBS transition in a 3D classical loop model (this includes the interference effect that suppresses N\'eel hedgehogs). We use this model to simulate unprecedentedly large systems (of size L512L\leq 512). Our results are compatible with a direct continuous transition at which both order parameters are critical, and we do not see conventional signs of first-order behaviour. However, we find that the scaling violations are stronger than previously realised and are incompatible with conventional finite-size scaling over the size range studied, even if allowance is made for a weakly/marginally irrelevant scaling variable. In particular, different determinations of the anomalous dimensions ηVBS\eta_\text{VBS} and ηNeˊel\eta_\text{N\'eel} yield very different results. The assumption of conventional finite-size scaling gives estimates which drift to negative values at large LL, in violation of unitarity bounds. In contrast, the behaviour of correlators on scales much smaller than LL is consistent with large positive anomalous dimensions. Barring an unexpected reversal in behaviour at still larger sizes, this implies that the transition, if continuous, must show unconventional finite-size scaling, e.g. from a dangerously irrelevant scaling variable. Another possibility is an anomalously weak first-order transition. By analysing the renormalisation group flows for the non-compact CPn1CP^{n-1} model (nn-component Abelian Higgs model) between two and four dimensions, we give the simplest scenario by which an anomalously weak first-order transition can arise without fine-tuning of the Hamiltonian.Comment: 20 pages, 19 figure

    Effects of many-electron jumps in relaxation and conductivity of Coulomb glasses

    Full text link
    A numerical study of the energy relaxation and conductivity of the Coulomb glass is presented. The role of many-electron transitions is studied by two complementary methods: a kinetic Monte Carlo algorithm and a master equation in configuration space method. A calculation of the transition rate for two-electron transitions is presented, and the proper extension of this to multi-electron transitions is discussed. It is shown that two-electron transitions are important in bypassing energy barriers which effectively block sequential one-electron transitions. The effect of two-electron transitions is also discussed.Comment: 8 pages, 6 figure

    3D loop models and the CP^{n-1} sigma model

    Full text link
    Many statistical mechanics problems can be framed in terms of random curves; we consider a class of three-dimensional loop models that are prototypes for such ensembles. The models show transitions between phases with infinite loops and short-loop phases. We map them to CPn1CP^{n-1} sigma models, where nn is the loop fugacity. Using Monte Carlo simulations, we find continuous transitions for n=1,2,3n=1,2,3, and first order transitions for n5n\geq 5. The results are relevant to line defects in random media, as well as to Anderson localization and (2+1)(2+1)-dimensional quantum magnets.Comment: Published versio

    Intergenerational linkages in consumption patterns and the geographical distribution of surnames

    Get PDF
    We specially thank Luis Ubeda for his very useful suggestions and comments. We also thank Klaus Desmet, Jaime Kahhat, Javier Ruiz-Castillo, Christian Schultz and two anonymous refereesThis paper attempts to detect the existence of links in consumption patterns between generations. Preferences over consumption goods may be determined by the preferences of parents and/or by preferences arising from the environment. We propose an indirect methodology to overcome the lack of data on consumption choices of dynasties, i.e., parents and their adult offspring. This new approach is based on the analysis of the correlation between the geographical distributions of surnames and consumption choices.We show that there is no signifi cant intergenerational link on consumption patterns for non food goods. Our results also suggest that there is a link between parents' and children's preferences over food itemsAuthors gratefully acknowledge financial support from the Spanish MEC through grants ECO2008-05721, ECO2011-29751, ECO 2010-19596 and ECO2010-19830. Romeu also acknowledges financial support from Fundación SENECA 11998Publicad

    Fluctuations of the correlation dimension at metal-insulator transitions

    Get PDF
    We investigate numerically the inverse participation ratio, P2P_2, of the 3D Anderson model and of the power-law random banded matrix (PRBM) model at criticality. We found that the variance of lnP2\ln P_2 scales with system size LL as σ2(L)=σ2()ALD2/2d\sigma^2(L)=\sigma^2(\infty)-A L^{-D_2/2d}, being D2D_2 the correlation dimension and dd the system dimension. Therefore the concept of a correlation dimension is well defined in the two models considered. The 3D Anderson transition and the PRBM transition for b=0.3b=0.3 (see the text for the definition of bb) are fairly similar with respect to all critical magnitudes studied.Comment: RevTex, 5 pages, 4 eps figures, to be published in Phys. Rev. Let

    Crossover from diffusive to strongly localized regime in two-dimensional systems

    Full text link
    We have studied the conductance distribution function of two-dimensional disordered noninteracting systems in the crossover regime between the diffusive and the localized phases. The distribution is entirely determined by the mean conductance, g, in agreement with the strong version of the single-parameter scaling hypothesis. The distribution seems to change drastically at a critical value very close to one. For conductances larger than this critical value, the distribution is roughly Gaussian while for smaller values it resembles a log-normal distribution. The two distributions match at the critical point with an often appreciable change in behavior. This matching implies a jump in the first derivative of the distribution which does not seem to disappear as system size increases. We have also studied 1/g corrections to the skewness to quantify the deviation of the distribution from a Gaussian function in the diffusive regime.Comment: 4 pages, 4 figure
    corecore