172 research outputs found

    Genetic diversity, infection prevalence, and possible transmission routes of Bartonella spp. in vampire bats

    Get PDF
    Bartonella spp. are globally distributed bacteria that cause endocarditis in humans and domestic animals. Recent work has suggested bats as zoonotic reservoirs of some human Bartonella infections; however, the ecological and spatiotemporal patterns of infection in bats remain largely unknown. Here we studied the genetic diversity, prevalence of infection across seasons and years, individual risk factors, and possible transmission routes of Bartonella in populations of common vampire bats (Desmodus rotundus) in Peru and Belize, for which high infection prevalence has previously been reported. Phylogenetic analysis of the gltA gene for a subset of PCR-positive blood samples revealed sequences that were related to Bartonella described from vampire bats from Mexico, other Neotropical bat species, and streblid bat flies. Sequences associated with vampire bats clustered significantly by country but commonly spanned Central and South America, implying limited spatial structure. Stable and nonzero Bartonella prevalence between years supported endemic transmission in all sites. The odds of Bartonella infection for individual bats was unrelated to the intensity of bat flies ectoparasitism, but nearly all infected bats were infested, which precluded conclusive assessment of support for vector-borne transmission. While metagenomic sequencing found no strong evidence of Bartonella DNA in pooled bat saliva and fecal samples, we detected PCR positivity in individual saliva and feces, suggesting the potential for bacterial transmission through both direct contact (i.e., biting) and environmental (i.e., fecal) exposures. Further investigating the relative contributions of direct contact, environmental, and vector-borne transmission for bat Bartonella is an important next step to predict infection dynamics within bats and the risks of human and livestock exposures

    Effects of breaking up prolonged sitting following low and high glycaemic index breakfast consumption on glucose and insulin concentrations

    Get PDF
    Purpose: Breaking up prolonged sitting can attenuate the postprandial rise in glucose and insulin. Whether such effects are dependent of the glycaemic index (GI) of the consumed carbohydrate is unknown. This study examined the acute effects of breaking up prolonged sitting following a low GI and a high GI breakfast on postprandial glucose and insulin concentrations. Procedures: Fourteen adult males aged 22.1 ± 1.2 years completed four, 4 h experimental conditions: high GI breakfast followed by uninterrupted sitting (HGI-SIT), low GI breakfast followed by uninterrupted sitting (LGI-SIT), high GI breakfast followed by 2 min activity breaks every 20 min (HGI-ACT), and low GI breakfast followed by 2 min activity breaks every 20 min (LGI-ACT). Positive incremental area under the curve (iAUC) for glucose and insulin (mean [95% CI]) for each 4h experimental condition was calculated. Statistical analyses were completed using linear mixed models. Results: The sitting × breakfast GI interaction was not significant for glucose positive iAUC (P=0.119). Glucose positive iAUC (mmol/L4 h−1) was significantly lower in the activity breaks conditions than the uninterrupted sitting conditions (2.07 [2.24, 2.89] vs. 2.56 [1.74, 2.40], respectively, P=0.004) and significantly lower in the low GI conditions than the high GI conditions (2.13 [1.80, 2.45] vs. 2.51 [2.18, 2.84], respectively, P=0.022). Insulin concentrations did not differ between conditions (P ≥ 0.203). Conclusions: Breaking up prolonged sitting and lowering breakfast GI independently reduced postprandial glucose responses. This indicates that interrupting prolonged sitting and reducing dietary GI are beneficial approaches for reducing cardiometabolic disease risk

    Distinguishing low frequency mutations from RT-PCR and sequence errors in viral deep sequencing data

    Get PDF
    There is a high prevalence of coronary artery disease (CAD) in patients with left bundle branch block (LBBB); however there are many other causes for this electrocardiographic abnormality. Non-invasive assessment of these patients remains difficult, and all commonly used modalities exhibit several drawbacks. This often leads to these patients undergoing invasive coronary angiography which may not have been necessary. In this review, we examine the uses and limitations of commonly performed non-invasive tests for diagnosis of CAD in patients with LBBB

    Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus

    Get PDF
    Due to the poor-fidelity of the enzymes involved in RNA genome replication, foot-and-mouth disease (FMD) virus samples comprise of unique polymorphic populations. In this study, deep sequencing was utilised to characterise the diversity of FMD virus (FMDV) populations in 6 infected cattle present on a single farm during the series of outbreaks in the UK in 2007. A novel RT–PCR method was developed to amplify a 7.6 kb nucleotide fragment encompassing the polyprotein coding region of the FMDV genome. Illumina sequencing of each sample identified the fine polymorphic structures at each nucleotide position, from consensus level changes to variants present at a 0.24% frequency. These data were used to investigate population dynamics of FMDV at both herd and host levels, evaluate the impact of host on the viral swarm structure and to identify transmission links with viruses recovered from other farms in the same series of outbreaks. In 7 samples, from 6 different animals, a total of 5 consensus level variants were identified, in addition to 104 sub-consensus variants of which 22 were shared between 2 or more animals. Further analysis revealed differences in swarm structures from samples derived from the same animal suggesting the presence of distinct viral populations evolving independently at different lesion sites within the same infected animal

    Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes

    Get PDF
    Identifying the animal origins of RNA viruses requires years of field and laboratory studies that stall responses to emerging infectious diseases. Using large genomic and ecological datasets, we demonstrate that animal reservoirs and the existence and identity of arthropod vectors can be predicted directly from viral genome sequences via machine learning. We illustrate the ability of these models to predict the epidemiology of diverse viruses across most human-infective families of single-stranded RNA viruses, including 69 viruses with previously elusive or never-investigated reservoirs or vectors. Models such as these, which capitalize on the proliferation of low-cost genomic sequencing, can narrow the time lag between virus discovery and targeted research, surveillance, and management

    Beneficial postprandial lipaemic effects of interrupting sedentary time with high-intensity physical activity versus a continuous moderate-intensity physical activity bout: a randomised crossover trial

    Get PDF
    Objectives To compare the postprandial cardiometabolic response to prolonged sitting, continuous moderate-intensity physical activity (PA) followed by prolonged sitting, and interrupting prolonged sitting with hourly high-intensity PA breaks. Design Three-condition randomised crossover trial. Methods Fourteen sedentary and inactive adults aged 29 ± 9 years took part in three, 8-h conditions: (1) prolonged sitting (SIT), (2) a continuous 30-min moderate-intensity PA bout followed by prolonged sitting (CONT-SIT), and (3) sitting interrupted hourly with 2 min 32 s high-intensity PA bouts (SIT-ACT). The treadmill PA in conditions 2 and 3 were matched for energy expenditure. Two standardised test meals were consumed during each condition. Incremental area under the curve (iAUC) for each 8-h condition was calculated for glucose, insulin, triglyceride, and high-density lipoprotein cholesterol (HDL-C) concentrations. Statistical analyses were completed using linear mixed models. Results Compared with SIT, SIT-ACT lowered triglyceride iAUC by 2.23 mmol/L ∙ 8 h (95% CI −4.33, −0.13) and raised HDL-C iAUC by 0.99 mmol/L ∙ 8 h (0.05, 1.93) (all p ≤ 0.038). There was no significant difference in triglyceride or HDL-C iAUC between CONT-SIT and SIT or SIT-ACT (p ≥ 0.211). There were no significant differences between conditions for glucose or insulin iAUC (p ≥ 0.504). Conclusions This study suggests that interrupting prolonged sitting with hourly high-intensity PA breaks acutely improves postprandial triglyceride and HDL-C concentrations compared with prolonged sitting, whereas a continuous moderate-intensity PA bout does not

    Complete Alphacoronavirus genome sequence from common vampire bats in Peru

    Get PDF
    Bats host diverse coronaviruses, including taxa capable of pandemic spread in humans. We report the genome of an alphacoronavirus from a neotropical bat species (Desmodus rotundus) in Peru, which contributes to our understanding of bat coronaviruses in nature

    Effect of doping-- and field--induced charge carrier density on the electron transport in nanocrystalline ZnO

    Full text link
    Charge transport properties of thin films of sol--gel processed undoped and Al-doped zinc oxide nanoparticles with variable doping level between 0.8 at% and 10 at% were investigated. The X-ray diffraction studies revealed a decrease of the average crystallite sizes in highly doped samples. We provide estimates of the conductivity and the resulting charge carrier densities with respect to the doping level. The increase of charge carrier density due to extrinsic doping were compared to the accumulation of charge carriers in field effect transistor structures. This allowed to assess the scattering effects due to extrinsic doping on the electron mobility. The latter decreases from 4.6*10^-3 cm^2/Vs to 4.5*10^-4 cm^2/Vs with increasing doping density. In contrast, the accumulation leads to an increasing mobility up to 1.5*10^-2 cm^2/Vs. The potential barrier heights related to grain boundaries between the crystallites were derived from temperature dependent mobility measurements. The extrinsic doping initially leads to a grain boundary barrier height lowering, followed by an increase due to doping-induced structural defects. We conclude that the conductivity of sol--gel processed nanocrystalline ZnO:Al is governed by an interplay of the enhanced charge carrier density and the doping-induced charge carrier scattering effects, achieving a maximum at 0.8 at% in our case.Comment: 8 pages, 7 figure

    Evaluating the potential of whole-genome sequencing for tracing transmission routes in experimental infections and natural outbreaks of bovine respiratory syncytial virus

    Get PDF
    Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease in cattle. Genomic sequencing can resolve phylogenetic relationships between virus populations, which can be used to infer transmission routes and potentially inform the design of biosecurity measures. Sequencing of short
    corecore