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Abstract 19 

Identifying the animal origins of RNA viruses requires years of field and laboratory studies 20 

that stall responses to emerging infectious diseases. Using large genomic and ecological 21 

datasets, we demonstrate that the animal reservoirs and the existence and identity of 22 

arthropod vectors can be predicted directly from viral genome sequences using machine 23 

learning. We illustrate the ability of these models to predict the epidemiology of diverse 24 

viruses across most human-infective families of single-stranded RNA viruses, including 69 25 

viruses with previously elusive or never-investigated reservoirs or vectors. Models such as 26 

these, which capitalize on the proliferation of low-cost genomic sequencing, can narrow the 27 

time lag between virus discovery and targeted research, surveillance and management. 28 

 29 

 30 

One Sentence Summary: The natural hosts of RNA viruses can be predicted directly from 31 

their genome sequences.   32 
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Main text:  33 

Preventing emerging viral infections including Ebola, SARS, and Zika requires identifying 34 

which reservoir hosts and/or blood-feeding arthropod vectors perpetuate viruses in nature. 35 

Current practice requires combining evidence from field surveillance, phylogenetics, 36 

laboratory experiments, and real-world interventions, but is time consuming and often 37 

inconclusive (1). This creates prolonged periods of uncertainty that may amplify economic 38 

and health losses. We aimed to develop a general model to predict reservoir hosts and 39 

arthropod vectors across single-stranded RNA (ssRNA) viruses, the viral group most 40 

commonly implicated in zoonotic disease outbreaks (2), building on the modern expansion of 41 

low-cost viral sequence data (3). 42 

 We collected a single representative genome sequence per viral species or strain from 43 

twelve taxonomic groups (11 families and 1 order) of ssRNA viruses that can infect humans; 44 

80% of all human-infective groups (Fig. 1A). For each virus, we used extensive literature 45 

searches to determine currently-accepted reservoir hosts (437 viruses; 11 reservoir groups), 46 

whether transmission involves an arthropod vector (527 viruses) and if so, the identity of 47 

arthropod vectors (98 viruses; 4 vector groups). To maximize predictive scope reservoir and 48 

vector groups included the most frequent sources of emerging human viruses as well as other 49 

common hosts in human-infective viral families (e.g., fish, plants and insects) (2, 4).  50 

Because related viruses often have closely-related hosts due to co-speciation and 51 

preferential host switching among related host species, we designed an algorithm to predict 52 

host associations from viral phylogenetic relatedness (5, 6). This phylogenetic neighborhood 53 

(PN) model identified the reservoir hosts of 58.1 ± 0.07% (standard deviation) of viruses, 54 

whether or not viruses were transmitted by an arthropod vector (95% ± 0.24) and the vector 55 

identity of arthropod-borne viruses (67.2 ± 0.12%). Biases in viral genome composition can 56 

also inform host-virus associations. Specifically, viral codon pair and dinucleotide biases are 57 
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reported to mimic those of their hosts, representing either a genome-wide strategy for 58 

adaptation to specific host groups or genomic imprinting by the host cellular machinery that 59 

viruses co-opt for replication (7). Irrespective, genomic biases can coarsely discriminate 60 

viruses from different host groups within several well-studied viral families (8–10). However, 61 

whether genomic biases can predict hosts from smaller or less-studied groups of viruses 62 

remains unresolved (11). We quantified 4229 traits from the 536 viral genomes in our 63 

dataset, including all possible codon pair, dinucleotide, codon, and amino acid biases (6)(Fig. 64 

S1). When all traits were weighted equally, dissimilarity-based clustering grouped viruses 65 

predominately by viral taxonomy; however, paraphyly of most viral groups implied selective 66 

forces on viral genomic biases that outweighed phylogenetic history (Fig. 1B,C). Generalized 67 

linear mixed models further revealed that even after controlling for effects of viral taxonomy, 68 

some genomic biases of viruses were correlated with their reservoir and vector associations, 69 

suggesting host effects on viral genomes that transcend viral groups (Figs. S2–S7). We 70 

hypothesized that combining host-associated genomic biases with viral PNs could maximize 71 

prediction of reservoirs and vectors from viral sequence data. 72 

We addressed this challenge using supervised machine learning, a class of statistical 73 

models that can integrate multiple traits that carry weak signal in isolation, but build a strong 74 

signal when optimally weighted (12). Gradient boosting machines (GBM, 13) outperformed 75 

seven alternative classifiers in predicting host associations from viral genomic biases and 76 

identified the most informative genomic traits for each aspect of viral ecology (Figs. S8–77 

S12). GBMs combining selected genomic traits (SelGen) with viral PNs predicted reservoir 78 

hosts with up to 83.5% accuracy, distinguishing all eleven reservoir groups, including 79 

taxonomic divisions within the birds (i.e., Neoaves versus Galloanserae) and bats [i.e., 80 

Pteropodiformes (“Pterobat”) versus Vespertilioniformes (“Vespbat”)] (Fig. 2A). Reservoirs 81 

of arthropod-borne and non-arthropod-borne viruses were predicted equally well (c2 test, p = 82 

0.5). Averaging predictions across observations of each virus in models trained on different 83 
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data subsets (i.e., ‘bagging’) improved prediction of most reservoir groups, such that the 84 

reservoirs of 71.9% of all viruses in the study were correctly assigned. GBMs lacking PN or 85 

SelGen misclassified the reservoirs of 33 and 22 more viruses, respectively (Fig. 2B,C).  86 

We trained two further sets of models that focused on arthropod-borne transmission (6). 87 

The first nearly perfectly identified which viruses were transmitted by arthropod vectors. 88 

Combined GBMs were most accurate overall (bagged accuracy = 97.0%, Fig. 2D, Fig. S11). 89 

Only 5 out of 427 viruses were misclassified by all three GBMs (PN, SelGen and combined), 90 

potentially reflecting uncertainty in some currently-accepted transmission routes 91 

(Supplementary Text). The second set of models distinguished transmission by all four vector 92 

classes (bagged accuracy = 90.8%; Fig. 2E,F). Ranking traits according to their predictive 93 

power showed that midge and sandfly vectors were identified predominately from genomic 94 

biases, while mosquito and tick vectors were strongly correlated with viral phylogeny (Fig. 95 

S12). Accuracy declined by 9.2 and 2.0 percentage points for GBMs lacking SelGen or PN 96 

(Fig. 2G). Thus, while phylogeny and genome-wide biases are partially correlated, algorithms 97 

successfully exploited independent information in each for all three prediction types. 98 

All models misclassified some currently-accepted hosts. We therefore analyzed 99 

whether attributes of predictions could help assess their veracity. Predictions with higher 100 

GBM probability (“bagged prediction strength”, BPS) were correct more often than those 101 

diffused across multiple host groups (Fig. S13A–C). Furthermore, when models misclassified 102 

viruses, the true host was most often the second-ranked prediction, such that study-wide 103 

accuracy for reservoir and vector prediction rose to 81% and 95.9% respectively when 104 

considering the top two most plausible predictions (Fig. 2C,G, Fig. S13D,E). Consequently, 105 

BPS provides a confidence metric, such that weaker predictions imply alternative hosts 106 

should be considered in order of their relative support. 107 

We next used our trained models to predict the natural epidemiology of viruses with 108 

previously unknown hosts (hereafter “orphan” viruses). As expected from the accuracy of our 109 
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models on viruses with known hosts, model-projected reservoirs and vectors often matched 110 

those suspected from epidemiological investigations (Fig. 3, Figs. S14–S16). For example, 111 

we predicted an artiodactyl reservoir for human enteric coronavirus 4408, a suspected 112 

spillover infection from cows into humans; a primate reservoir of O’nyong-nyong virus, for 113 

which humans are the presumed reservoir; and that outbreaks of Tembusu virus in domestic 114 

ducks follow cross-species transmission from wild Neoaves (14–16). Other results pointed to 115 

unexpected reservoirs. For example, all four orphan ebolaviruses had greater support for the 116 

commonly-accepted Pterobat (suborder Pteropodiformes) than for Vespbat reservoirs, but 117 

surprisingly, Bundibugyo and Tai Forest ebolaviruses had equal or stronger support for 118 

primate reservoirs. This indicates that signals learned from primate viruses from divergent 119 

viral families occurred in these ebolavirus genomes. Neither of species of ebolavirus has been 120 

detected in bats (17) and the slow evolution of genomic biases in Filoviruses implied that the 121 

observed signal could not have evolved during short chains of transmission in primates (Fig. 122 

S17). The possibility of an undiscovered primate ebolavirus reservoir therefore deserves 123 

empirical validation. For viruses without conjectured reservoirs or vectors, we generate 124 

candidates for prioritized surveillance. For example, Bas-Congo virus caused an outbreak of 125 

hemorrhagic fever in the Democratic Republic of Congo and was detected in humans only 126 

(18). Our models predicted an Artiodactyl reservoir, a high probability of arthropod-borne 127 

transmission, and midges as the likely vector of this emerging disease (Fig. 3A,C). Such 128 

predictions may ultimately support earlier interventions targeting appropriate reservoirs or 129 

vectors that interrupt the critical early phases of outbreaks or limit future re-emergence. 130 

Likewise, our models can provide ecological insights for virus discovery programs (Fig. 3B). 131 

By virtue of using slowly-evolving biases spread across viral genomes, our models 132 

predict taxa that maintain long-term viral circulation rather than “bridge hosts” that sustain 133 

insufficient chains of transmission to imprint evolutionary signals in viral genomes (e.g., pig 134 

hosts of bat-borne Nipah virus). Similarly, sustained transmission by divergent hosts may 135 



 7 

create conflicting signals that obscure model predictions (Supplementary Text). Finally, 136 

models predict only the reservoir and vector groups used for training and will erroneously 137 

assign a host from these same categories if applied to viruses from host groups that were too 138 

rare include (Fig. S18). As virus discoveries expand databases, evaluating predictive 139 

accuracy for additional host groups will be an important improvement.     140 

 In conclusion, we created a machine learning framework that leverages traits from 141 

individual viruses with network-derived information from their relatives to predict: (i) the 142 

reservoir hosts of twelve key groups of RNA viruses, (ii) whether their transmission involves 143 

an arthropod vector and (iii) the identity of that vector. Our models make these predictions, 144 

supply quantitative measures of confidence, and provide relative support for alternatives from 145 

single genome sequences, with no requirement for experiments, longitudinal surveillance, or 146 

genomes of candidate reservoirs or vectors. As viral genomes are now produced within hours 147 

of detection (19), algorithms that rapidly generate field-testable hypotheses from sequence data 148 

narrow the gap between virus discovery and actionable understanding of virus ecology.  149 

 150 
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Figures  266 

 267 

Fig. 1. Distribution and hierarchical clustering of reservoir host and arthropod vector 268 

associations across viral taxonomic groups. (A) Barplots show the number of viruses in the 269 

dataset from each reservoir host and vector class and the number of orphan viruses in each 270 

viral group. The order Artiodactyla (even-toed ungulates) includes the Bovidae, Camelidae, 271 

Suidae, Antilocapridae, and Giraffidae families. Galloanserae (ducks, fowl) and Neoaves 272 

(most other modern birds) are superorders within the class Aves (birds). (B,C) Dendrograms 273 

of 437 viruses with known reservoir hosts and 98 viruses with known arthropod vectors, 274 

estimated by hierarchically clustering 4229 genomic biases calculated from viral genomes. 275 

Colors of tip symbols indicate reservoir or vectors associations. Branch colors show viral 276 

taxonomic groups. Branch lengths are log(n+1) transformed for visualization. (B) Trait 277 

models with true viral taxonomic group associations were favored over those with randomly 278 

shuffled viral groups (DAIC = -1690.6) but also clustered significantly by reservoir (DAIC = 279 
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-540.7). (C) Arboviruses clustered by both viral taxonomy (DAIC = -238.1) and vector group 280 

(DAIC = -61.5). DAIC values are from models comparing true associations to the mean AIC 281 

from 500 tip trait randomizations. 282 

 283 
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 293 

 294 
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 295 

Fig. 2. Accurate genomic prediction of viral ecology using machine learning. (A) Heatmap 296 

showing the proportion of accurate (diagonal) and misclassified (off diagonal) predictions 297 

within each reservoir host class, averaged across GBMs trained and optimized on different 298 

subsets of 372 viruses. Row numbers indicate the number of viruses per reservoir in each 299 

validation set (N = 65 viruses).  (B) The distributions of per reservoir accuracies in single 300 

validation sets (colorful points and lines are median and SD) and after bagging (white points).  301 

Black points show the best single model. (C) Cumulative bagged accuracy across GBMs 302 

using PN and SelGen traits in isolation and in combination. The x-axis shows the rank of the 303 

true reservoir (i.e., 1 = true reservoir was the top prediction; 2 = true reservoir was the 304 

second-ranked prediction and so on). The y-axis shows accuracy when considering increasing 305 

numbers of predictions as plausible. The asterisk indicates significantly higher accuracy in 306 

the combined model (χ2 test: p < 0.05). Cumulative null model accuracy was estimated by 307 

training GBMs on 50 randomly generated traits that were simulated from normal 308 

distributions ranging from 0 to 2 and randomly assigned to viruses. (D,E) Heatmaps showing 309 
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the average proportion of accurate predictions of arthropod-borne status and vector identity 310 

(N = 80 and 46 viruses per validation set, respectively). (F) Distributions of per vector 311 

accuracies as in B. (G) Cumulative bagged accuracy in vector prediction across models as in 312 

C.  313 

 314 
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 316 
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 318 

 319 

 320 
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 321 

Fig. 3. Reservoir hosts and arthropod vectors of orphan viruses predicted from their genome 322 

sequences. (A) Predicted reservoirs for 36 viruses that emerged from unknown sources. (B) 323 

31 viruses discovered by active surveillance of wildlife or blood-feeding arthropods. (C) 324 

Predictions of arthropod-borne status for 17 viruses (left of dashed line) and vector identities 325 

(last 4 columns, when applicable). Color gradients show the BPS for each class from the top 326 

25% models from each set of GBMs. Figs. S14–S16 show the full probability distributions of 327 

predictions. 328 
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