193 research outputs found
Biogeographical analyses to facilitate targeted conservation of orchid diversity hotspots in Costa Rica
Aim: We conduct a biogeographical assessment of orchids in a global biodiversity
hotspot to explore their distribution and occurrences of local hotspots while identifying geographic attributes underpinning diversity patterns. We evaluate habitat
characteristics associated with orchid diversity hotspots and make comparisons to
other centres of orchid diversity to test for global trends. The ultimate goal was to
identify an overall set of parameters that effectively characterize critical habitats to
target in local and global orchid conservation efforts.
Location: Costa Rica; Mesoamerica.
Taxon: Orchidaceae.
Methods: Data from an extensive set of herbarium records were used to map orchid
distributions and to identify diversity hotspots. Hotspot data were combined with
geographic attribute data, including environmental and geopolitical variables, and a
random forest regression model was utilized to assess the importance of each variable for explaining the distribution of orchid hotspots. A likelihood model was created based on variable importance to identify locations where suitable habitats and
unidentified orchid hotspots might occur.
Results: Orchids were widely distributed and hotspots occurred primarily in mountainous regions, but occasionally at lower elevations. Precipitation and vegetation
cover were the most important predictive variables associated with orchid hotspots.
Variable values underpinning Costa Rican orchid hotspots were similar to those reported at other sites worldwide. Models also identified suitable habitats for sustaining orchid diversity that occurred outside of known hotspots and protected areas.
Main conclusions: Several orchid diversity hotspots and potentially suitable habitats
occur outside of known distributions and/or protected areas. Recognition of these
sites and their associated geographic attributes provides clear targets for optimizing
orchid conservation efforts in Costa Rica, although certain caveats warrant consideration. Habitats linked with orchid hotspots in Costa Rica were similar to those documented elsewhere, suggesting the existence of a common biogeographical trend
regarding critical habitats for orchid conservation in disparate tropical regions.Universidad de Puerto Rico/[]/UPR/Puerto RicoUniversidad de Costa Rica/[]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Jardín Botánico Lankester (JBL
An enterprise engineering approach for the alignment of business and information technology strategy
Information systems and information technology (IS/IT, hereafter just IT) strategies usually depend on a business strategy. The alignment of both strategies improves their strategic plans. From an external perspective, business and IT alignment is the extent to which the IT strategy enables and drives the business strategy. This article reviews strategic alignment between business and IT, and proposes the use of enterprise engineering (EE) to achieve this alignment. The EE approach facilitates the definition of a formal dialog in the alignment design. In relation to this, new building blocks and life-cycle phases have been defined for their use in an enterprise architecture context. This proposal has been adopted in a critical process of a ceramic tile company for the purpose of aligning a strategic business plan and IT strategy, which are essential to support this process. © 2011 Taylor & Francis.Cuenca, L.; Boza, A.; Ortiz, A. (2011). An enterprise engineering approach for the alignment of business and information technology strategy. International Journal of Computer Integrated Manufacturing. 24(11):974-992. https://doi.org/10.1080/0951192X.2011.579172S9749922411(1993). CIMOSA: Open System Architecture for CIM. doi:10.1007/978-3-642-58064-2Ang, J., Shaw, N., & Pavri, F. (1995). Identifying strategic management information systems planning parameters using case studies. International Journal of Information Management, 15(6), 463-474. doi:10.1016/0268-4012(95)00049-dAvison, D., Jones, J., Powell, P., & Wilson, D. (2004). Using and validating the strategic alignment model. The Journal of Strategic Information Systems, 13(3), 223-246. doi:10.1016/j.jsis.2004.08.002Avgerou, & McGrath. (2007). Power, Rationality, and the Art of Living through Socio-Technical Change. MIS Quarterly, 31(2), 295. doi:10.2307/25148792Bergeron, F., Raymond, L., & Rivard, S. (2004). Ideal patterns of strategic alignment and business performance. Information & Management, 41(8), 1003-1020. doi:10.1016/j.im.2003.10.004Bernus, P., Nemes, L., & Schmidt, G. (Eds.). (2003). Handbook on Enterprise Architecture. doi:10.1007/978-3-540-24744-9Bleistein, S. J., Cox, K., Verner, J., & Phalp, K. T. (2006). B-SCP: A requirements analysis framework for validating strategic alignment of organizational IT based on strategy, context, and process. Information and Software Technology, 48(9), 846-868. doi:10.1016/j.infsof.2005.12.001Buchanan, S., & Gibb, F. (1998). The information audit: An integrated strategic approach. International Journal of Information Management, 18(1), 29-47. doi:10.1016/s0268-4012(97)00038-8Buchanan, S., & Gibb, F. (2007). The information audit: Role and scope. International Journal of Information Management, 27(3), 159-172. doi:10.1016/j.ijinfomgt.2007.01.002Chen, D., & Vernadat, F. (2004). Standards on enterprise integration and engineering—state of the art. International Journal of Computer Integrated Manufacturing, 17(3), 235-253. doi:10.1080/09511920310001607087Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659. doi:10.1016/j.compind.2007.12.016Chen, H.-M., Kazman, R., & Garg, A. (2005). BITAM: An engineering-principled method for managing misalignments between business and IT architectures. Science of Computer Programming, 57(1), 5-26. doi:10.1016/j.scico.2004.10.002Cuenca, L., Ortiz, A., & Vernadat, F. (2006). From UML or DFD models to CIMOSA partial models and enterprise components. International Journal of Computer Integrated Manufacturing, 19(3), 248-263. doi:10.1080/03081070500065841Davis, G. B. (2000). Information Systems Conceptual Foundations: Looking Backward and Forward. IFIP Advances in Information and Communication Technology, 61-82. doi:10.1007/978-0-387-35505-4_5Gindy, N., Morcos, M., Cerit, B., & Hodgson, A. (2008). Strategic technology alignment roadmapping STAR® aligning R&D investments with business needs. International Journal of Computer Integrated Manufacturing, 21(8), 957-970. doi:10.1080/09511920801927148Goethals, F. G., Lemahieu, W., Snoeck, M., & Vandenbulcke, J. A. (2007). The data building blocks of the enterprise architect. Future Generation Computer Systems, 23(2), 269-274. doi:10.1016/j.future.2006.05.004Greefhorst, D., Koning, H., & Vliet, H. van. (2006). The many faces of architectural descriptions. Information Systems Frontiers, 8(2), 103-113. doi:10.1007/s10796-006-7975-xGregor, S., Hart, D., & Martin, N. (2007). Enterprise architectures: enablers of business strategy and IS/IT alignment in government. Information Technology & People, 20(2), 96-120. doi:10.1108/09593840710758031Hartono, E., Lederer, A. L., Sethi, V., & Zhuang, Y. (2003). Key predictors of the implementation of strategic information systems plans. ACM SIGMIS Database, 34(3), 41-53. doi:10.1145/937742.937747Henderson, J. C., & Venkatraman, H. (1993). Strategic alignment: Leveraging information technology for transforming organizations. IBM Systems Journal, 32(1), 472-484. doi:10.1147/sj.382.0472Hirschheim, R., & Sabherwal, R. (2001). Detours in the Path toward Strategic Information Systems Alignment. California Management Review, 44(1), 87-108. doi:10.2307/41166112Hoogervorst, J. A. P. (2009). Enterprise Governance and Enterprise Engineering. doi:10.1007/978-3-540-92671-9Johnson, A. M., & Lederer, A. L. (2010). CEO/CIO mutual understanding, strategic alignment, and the contribution of IS to the organization. Information & Management, 47(3), 138-149. doi:10.1016/j.im.2010.01.002JONKERS, H., LANKHORST, M., VAN BUUREN, R., HOPPENBROUWERS, S., BONSANGUE, M., & VAN DER TORRE, L. (2004). CONCEPTS FOR MODELING ENTERPRISE ARCHITECTURES. International Journal of Cooperative Information Systems, 13(03), 257-287. doi:10.1142/s0218843004000985King, W. R. (1978). Strategic Planning for Management Information Systems. MIS Quarterly, 2(1), 27. doi:10.2307/249104Leonard, J. (2007). Sharing a Vision: comparing business and IS managers’ perceptions of strategic alignment issues. Australasian Journal of Information Systems, 15(1). doi:10.3127/ajis.v15i1.299Luftman, J. N., Lewis, P. R., & Oldach, S. H. (1993). Transforming the enterprise: The alignment of business and information technology strategies. IBM Systems Journal, 32(1), 198-221. doi:10.1147/sj.321.0198Luftman, J., Ben-Zvi, T., Dwivedi, R., & Rigoni, E. H. (2010). IT Governance. International Journal of IT/Business Alignment and Governance, 1(2), 13-25. doi:10.4018/jitbag.2010040102Melville, Kraemer, & Gurbaxani. (2004). Review: Information Technology and Organizational Performance: An Integrative Model of IT Business Value. MIS Quarterly, 28(2), 283. doi:10.2307/25148636Newkirk, H. E., & Lederer, A. L. (2006). Incremental and Comprehensive Strategic Information Systems Planning in an Uncertain Environment. IEEE Transactions on Engineering Management, 53(3), 380-394. doi:10.1109/tem.2006.877446Noran, O. (2003). An analysis of the Zachman framework for enterprise architecture from the GERAM perspective. Annual Reviews in Control, 27(2), 163-183. doi:10.1016/j.arcontrol.2003.09.002Noran, O. (2005). A systematic evaluation of the C4ISR AF using ISO15704 Annex A (GERAM). Computers in Industry, 56(5), 407-427. doi:10.1016/j.compind.2004.12.005Ortiz, A., Lario, F., & Ros, L. (1999). Enterprise Integration—Business Processes Integrated Management: a proposal for a methodology to develop Enterprise Integration Programs. Computers in Industry, 40(2-3), 155-171. doi:10.1016/s0166-3615(99)00021-4Panetto, H., Baïna, S., & Morel, G. (2007). Mapping the IEC 62264 models onto the Zachman framework for analysing products information traceability: a case study. Journal of Intelligent Manufacturing, 18(6), 679-698. doi:10.1007/s10845-007-0040-xPapp, R. (Ed.). (2001). Strategic Information Technology. doi:10.4018/978-1-87828-987-2Peñaranda, N., Mejía, R., Romero, D., & Molina, A. (2010). Implementation of product lifecycle management tools using enterprise integration engineering and action-research. International Journal of Computer Integrated Manufacturing, 23(10), 853-875. doi:10.1080/0951192x.2010.495136Reich, B. H., & Benbasat, I. (2000). Factors That Influence the Social Dimension of Alignment between Business and Information Technology Objectives. MIS Quarterly, 24(1), 81. doi:10.2307/3250980Sledgianowski, D., & Luftman, J. (2005). IT-Business Strategic Alignment Maturity. Journal of Cases on Information Technology, 7(2), 102-120. doi:10.4018/jcit.2005040107Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for information systems architecture. IBM Systems Journal, 31(3), 590-616. doi:10.1147/sj.313.0590Van Grembergen, W., & De Haes, S. (2010). A Research Journey into Enterprise Governance of IT, Business/IT Alignment and Value Creation. International Journal of IT/Business Alignment and Governance, 1(1), 1-13. doi:10.4018/jitbag.2010120401Xueying Wang, Xiongwei Zhou, & Longbin Jiang. (2008). A method of business and IT alignment based on Enterprise Architecture. 2008 IEEE International Conference on Service Operations and Logistics, and Informatics. doi:10.1109/soli.2008.468649
A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS measured from stellar occultations
This work aims at constraining the size, shape, and geometric albedo of the
dwarf planet candidate 2002 MS4 through the analysis of nine stellar
occultation events. Using multichord detection, we also studied the object's
topography by analyzing the obtained limb and the residuals between observed
chords and the best-fitted ellipse. We predicted and organized the
observational campaigns of nine stellar occultations by 2002 MS4 between 2019
and 2022, resulting in two single-chord events, four double-chord detections,
and three events with three to up to sixty-one positive chords. Using 13
selected chords from the 8 August 2020 event, we determined the global
elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the
object's rotational information from the literature, constrains the object's
size, shape, and albedo. Additionally, we developed a new method to
characterize topography features on the object's limb. The global limb has a
semi-major axis of 412 10 km, a semi-minor axis of 385 17 km, and
the position angle of the minor axis is 121 16. From
this instantaneous limb, we obtained 2002 MS4's geometric albedo and the
projected area-equivalent diameter. Significant deviations from the fitted
ellipse in the northernmost limb are detected from multiple sites highlighting
three distinct topographic features: one 11 km depth depression followed by a
25 km height elevation next to a crater-like depression with an
extension of 322 39 km and 45.1 1.5 km deep. Our results present an
object that is 138 km smaller in diameter than derived from thermal
data, possibly indicating the presence of a so-far unknown satellite. However,
within the error bars, the geometric albedo in the V-band agrees with the
results published in the literature, even with the radiometric-derived albedo
Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: The ZIKAlliance consortium
Background: The European Commission (EC) Horizon 2020 (H2020)-funded ZIKAlliance Consortium designed a multicentre study including pregnant women (PW), children (CH) and natural history (NH) cohorts. Clinical sites were selected over a wide geographic range within Latin America and the Caribbean, taking into account the dynamic course of the ZIKV epidemic. Methods: Recruitment to the PW cohort will take place in antenatal care clinics. PW will be enrolled regardless of symptoms and followed over the course of pregnancy, approximately every 4 weeks. PW will be revisited at delivery (or after miscarriage/abortion) to assess birth outcomes, including microcephaly and other congenital abnormalities according to the evolving definition of congenital Zika syndrome (CZS). After birth, children will be followed for 2 years in the CH cohort. Follow-up visits are scheduled at ages 1-3, 4-6, 12, and 24 months to assess neurocognitive and developmental milestones. In addition, a NH cohort for the characterization of symptomatic rash/fever illness was designed, including follow-up to capture persisting health problems. Blood, urine, and other biological materials will be collected, and tested for ZIKV and other relevant arboviral diseases (dengue, chikungunya, yellow fever) using RT-PCR or serological methods. A virtual, decentralized biobank will be created. Reciprocal clinical monitoring has been established between partner sites. Substudies of ZIKV seroprevalence, transmissio
Results on stellar occultations by (307261) 2002 MS4
Transneptunian Objects (TNOs) are the remnants of our planetary system and can retain information about the early stages of the Solar System formation. Stellar occultation is a groundbased method used to study these distant bodies which have been presenting exciting results mainly about their physical properties. The big TNO called 2002 MS4 was discovered by Trujillo, C. A., & Brown, M. E., in 2002 using observations made at the Palomar Observatory (EUA). It is classified as a hot classical TNO, with orbital parameters a = 42 AU, e = 0.139, and i = 17.7º. Using thermal measurements with PACS (Herschel) and MIPS (Spitzer Space Telescope) instruments, Vilenius et al. 2012 obtained a radius of 467 +/- 23.5 km and an albedo of 0.051.Predictions of stellar occultations by this body in 2019 were obtained using the Gaia DR2 catalogue and NIMA ephemeris (Desmars et al. 2015) and made available in the Lucky Star web page (https://lesia.obspm.fr/lucky-star/). Four events were observed in South America and Canada. The first stellar occultation was detected on 09 July 2019, resulting in two positives and four negatives chords, including a close one which proven to be helpful to constrain the body’s size. This detection also allowed us to obtain a precise astrometric position that was used to update its ephemeris and improve the predictions of the following events. Two of them were detected on 26 July 2019, separated by eight hours. The first event was observed from South America and resulted in three positive detections, while the second, observed from Canada, resulted in a single chord. Another double chord event was observed on 19 August 2019 also from Canada.Facultad de Ciencias Astronómicas y Geofísica
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
- …