15 research outputs found
La responsabilidad social empresarial en las estrategias de desarrollo del gobierno peruano: propuestas de la Carta de Navegación y el sector privado
Presenta las exposiciones de expertos acerca de la responsabilidad social en las empresas peruanas, en el marco de la XLVII Reunión de Intercampus
Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: Acute vs. chronic supplementation
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordPURPOSE: To investigate whether chronic supplementation with a low or moderate dose of dietary nitrate (NO3(-)) reduces submaximal exercise oxygen uptake (V˙O2) and to assess whether or not this is dependent on acute NO3(-) administration prior to exercise. METHODS: Following baseline tests, 34 healthy subjects were allocated to receive 3 mmol NO3(-), 6 mmol NO3(-) or placebo. Two hours following the first ingestion, and after 7, 28 and 30 days of supplementation, subjects completed two moderate-intensity step exercise tests. On days 28 and 30, subjects in the NO3(-) groups completed the test 2 h post consumption of a NO3(-) dose (CHR + ACU) and a placebo dose (CHR). RESULTS: Plasma nitrite concentration ([NO2(-)]) was elevated in a dose-dependent manner at 2 h, 7 days and 28-30 days on the CHR + ACU visit. Compared to pre-treatment baseline, 6 mmol NO3(-) reduced the steady-state V˙O2 during moderate-intensity exercise by 3% at 2 h (P = 0.06), 7 days and at 28-30 days (both P < 0.05) on the CHR + ACU visit, but was unaffected by 3 mmol NO3(-) at all measurement points. On the CHR visit in the 6 mmol group, plasma [NO2(-)] had returned to pre-treatment baseline, but the steady-state V˙O2 remained reduced. CONCLUSION: Up to ∼4 weeks supplementation with 6 but not 3 mmol NO3(-) can reduce submaximal exercise V˙O2. A comparable reduction in submaximal exercise V˙O2 following chronic supplementation with 6 mmol NO3(-) can be achieved both with and without the acute ingestion of NO3(-) and associated elevation of plasma [NO2(-)].Financial support for this study was provided by the Gatorade Sports Science Institute, a division of PepsiCo, Inc. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of PepsiCo, Inc
Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: acute vs. chronic supplementation
Purpose
To investigate whether chronic supplementation with a low or moderate dose of dietary nitrate (NO3−) reduces submaximal exercise oxygen uptake (View the MathML sourceO2) and to assess whether or not this is dependent on acute NO3− administration prior to exercise.
Methods
Following baseline tests, 34 healthy subjects were allocated to receive 3 mmol NO3−, 6 mmol NO3− or placebo. Two hours following the first ingestion, and after 7, 28 and 30 days of supplementation, subjects completed two moderate-intensity step exercise tests. On days 28 and 30, subjects in the NO3− groups completed the test 2 h post consumption of a NO3− dose (CHR + ACU) and a placebo dose (CHR).
Results
Plasma nitrite concentration ([NO2−]) was elevated in a dose-dependent manner at 2 h, 7 days and 28–30 days on the CHR + ACU visit. Compared to pre-treatment baseline, 6 mmol NO3− reduced the steady-state View the MathML sourceO2 during moderate-intensity exercise by 3% at 2 h (P = 0.06), 7 days and at 28–30 days (both P < 0.05) on the CHR + ACU visit, but was unaffected by 3 mmol NO3− at all measurement points. On the CHR visit in the 6 mmol group, plasma [NO2−] had returned to pre-treatment baseline, but the steady-state View the MathML sourceO2 remained reduced.
Conclusion
Up to ∼4 weeks supplementation with 6 but not 3 mmol NO3− can reduce submaximal exercise View the MathML sourceO2. A comparable reduction in submaximal exercise View the MathML sourceO2 following chronic supplementation with 6 mmol NO3− can be achieved both with and without the acute ingestion of NO3− and associated elevation of plasma [NO2−]
Absence of ferromagnetic order in high quality bulk Co-doped ZnO samples
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)Bulk Zn(1-x)Co(x)O samples were synthesized via standard solid-state reaction route with different Co molar concentrations up to 21%. A detailed microstructural analysis was carried out to investigate alternative sources of ferromagnetism, such as secondary phases and nanocrystals embedded in the bulk material. Conjugating different techniques we confirmed the Zn replacement by Co ions in the wurtzite ZnO structure, which retains, however, a high crystalline quality. No segregated secondary phases neither Co-rich nanocrystals were detected. Superconducting quantum interference device magnetometry demonstrates a paramagnetic Curie-Weiss behavior with antiferromagnetic interactions. We discuss the observed room temperature paramagnetism of our samples considering the current models for the magnetic properties of diluted magnetic semiconductors. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3459885]1083FAPEMIGConselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)FAPEMIG_BrasilCNPq_BrasilFAPESP_Brasi
Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)
Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic
La responsabilidad social empresarial en las estrategias de desarrollo del gobierno peruano : propuestas de la Carta de Navegación y el sector privado
Presenta las exposiciones de expertos acerca de la responsabilidad social en las empresas peruanas, en el marco de la XLVII Reunión de Intercampus
Effect of inorganic nitrate on exercise capacity, mitochondria respiration, and vascular function in heart failure with reduced ejection fraction
Chronic underperfusion of the skeletal muscle tissues is a contributor to a decrease in exercise capacity in patients with heart failure with reduced ejection fraction (HFrEF). This underperfusion is due, at least in part, to impaired nitric oxide (NO) bioavailability. Oral inorganic nitrate supplementation increases NO bioavailability and may be used to improve exercise capacity, vascular function, and mitochondrial respiration. Sixteen patients with HFrEF (fifteen men, 63 ± 4 yr, body mass index: 31.8 ± 2.1 kg/m2) participated in a randomized, double-blind, crossover design study. Following consumption of either nitrate-rich beetroot juice (16 mmol nitrate/day) or a nitrate-depleted placebo for 5 days, participants completed separate visits for assessment of exercise capacity, endothelial function, and muscle mitochondrial respiration. Participants then had a 2-wk washout before completion of the same protocol with the other intervention. Statistical significance was set a priori at P 0.05). Inorganic nitrate supplementation did not improve exercise capacity and skeletal muscle mitochondrial respiratory function in HFrEF. Future studies should explore alternative interventions to improve peripheral muscle tissue function in HFrEF
Absence of ferromagnetic order in high quality bulk Co-doped ZnO samples
Bulk Zn(1-x)Co(x)O samples were synthesized via standard solid-state reaction route with different Co molar concentrations up to 21%. A detailed microstructural analysis was carried out to investigate alternative sources of ferromagnetism, such as secondary phases and nanocrystals embedded in the bulk material. Conjugating different techniques we confirmed the Zn replacement by Co ions in the wurtzite ZnO structure, which retains, however, a high crystalline quality. No segregated secondary phases neither Co-rich nanocrystals were detected. Superconducting quantum interference device magnetometry demonstrates a paramagnetic Curie-Weiss behavior with antiferromagnetic interactions. We discuss the observed room temperature paramagnetism of our samples considering the current models for the magnetic properties of diluted magnetic semiconductors. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3459885]FAPEMIGCNPqFAPES