8,244 research outputs found

    Metabolic interactions between vitamin A and conjugated linoleic acid

    Get PDF
    Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR- and RXR heterodimer. We also present preliminary data that may position PPAR- at the crossroads between the metabolism of lipids and vitamin

    Using Computer Simulation for Reducing the Appointment Lead-Time in a Public Pediatric Outpatient Department

    Get PDF
    Pediatric outpatient departments aim to provide a pleasant, effective and continuing care to children. However, a problem in these units is the long waiting time for children to receive an appointment. Prolonged appointment lead-time remains a global challenge since it results in delayed diagnosis and treatment causing increased morbidity and dissatisfaction. Additionally, it leads to an increased number of hospitalization and emergency department visits which augments the financial burden faced by healthcare systems. Despite these considerations, the studies directly concentrating on the reduction of appointment lead-time in these departments are largely limited. Therefore, this paper proposes the application of Discrete-event Simulation (DES) approach to evaluate potential improvement strategies aiming at reducing average appointment lead-time. Initially, the outpatient department is characterized to effectively identify the main activities, process variables, interactions, and system constraints. After data collection, input analysis is conducted through intra-variable independence, homogeneity and goodness-of-fit tests followed by the creation of a simulation model representing the real pediatric outpatient department. Then, Mann-Whitney tests are used to prove whether the model was statistically comparable with the real-world system. After this, the outpatient department performance is assessed in terms of average appointment lead-time and resource utilization. Finally, three improvement scenarios are assessed technically and financially, to determine if they are viable for implementation. A case study of a mixed-patient type environment in a public pediatric outpatient department has been explored to validate the proposed methodology. Statistical tests demonstrate that appointment lead-time in pediatric outpatient departments may be meaningfully minimized using this approach. © 2019, Springer Nature Switzerland AG

    New objects in old structures: The Iron Age hoard of the Palacio III megalithic funerary complex (Almadén de la Plata, Seville, Spain)

    Get PDF
    Cultural contact, exchange and interaction feature high in the list of challenging topics of current research on European Prehistory. Not far off is the issue of the changing role of monuments in the making and maintaining of key cultural devices such as memory and identity. Addressing both these highly-debated issues from a science-based perspective, in this paper we look at an unusual case study set in southern Iberia and illustrate how these archaeological questions can benefit from robust materials-science approaches.We present the contextual, morphological and analytical study of an exceptional Early Iron Age hoard composed of a number of different (and mostly exotic) materials such as amber, quartz, silver and ceramic. This hoard, found under the fallen orthostat of a megalithic structure built at least 2000 years earlier, throws new light on long-distance exchange networks and the effect they could have had on the cultural identities and social relations of local Iberian Early Iron Age communities. Moreover, the archaeometric study reveals how diverse and distant the sources of these item are (Northern Europe to Eastern and Western Mediterranean raw materials, as well as local and eastern technologies), therefore raising questions concerning the social mechanisms used to establish change and resistance in contexts of colonial encounter

    Algebraic Approach to Interacting Quantum Systems

    Full text link
    We present an algebraic framework for interacting extended quantum systems to study complex phenomena characterized by the coexistence and competition of different states of matter. We start by showing how to connect different (spin-particle-gauge) {\it languages} by means of exact mappings (isomorphisms) that we name {\it dictionaries} and prove a fundamental theorem establishing when two arbitrary languages can be connected. These mappings serve to unravel symmetries which are hidden in one representation but become manifest in another. In addition, we establish a formal link between seemingly unrelated physical phenomena by changing the language of our model description. This link leads to the idea of {\it universality} or equivalence. Moreover, we introduce the novel concept of {\it emergent symmetry} as another symmetry guiding principle. By introducing the notion of {\it hierarchical languages}, we determine the quantum phase diagram of lattice models (previously unsolved) and unveil hidden order parameters to explore new states of matter. Hierarchical languages also constitute an essential tool to provide a unified description of phases which compete and coexist. Overall, our framework provides a simple and systematic methodology to predict and discover new kinds of orders. Another aspect exploited by the present formalism is the relation between condensed matter and lattice gauge theories through quantum link models. We conclude discussing applications of these dictionaries to the area of quantum information and computation with emphasis in building new models of computation and quantum programming languages.Comment: 44 pages, 14 psfigures. Advances in Physics 53, 1 (2004

    Simulating chemistry using quantum computers

    Get PDF
    The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.Comment: 27 pages. Submitted to Ann. Rev. Phys. Che

    Identifying the most appropriate classifier for underpinning assistive technology adoption for people with dementia: an integration of Fuzzy AHP and VIKOR methods

    Get PDF
    Recently, the number of People with Dementia (PwD) has been rising exponentially across the world. The main symptoms that PwD experience include AQ1 impairments of reasoning, memory, and thought. Owing to the burden faced by this chronic condition, Assistive Technology-based solutions (ATS) have been prescribed as a form of treatment. Nevertheless, it is widely acknowledged that low adoption rates of ATS have hampered their benefits within a health and social care context. It is then necessary to effectively discriminate between adopters and non-adopters of such solutions to avoid cost implications, improve the life quality of adopters, and find intervention alternatives for non-adopters. Several classifiers have been proposed as advancement towards the personalisation of self-management interventions for dementia in a scalable way. As multiple algorithms have been developed, an important step in technology adoption is to select the most appropriate classification alternative based on different criteria. This paper presents the integration of Fuzzy AHP (FAHP) and VIKOR to address this challenge. First, FAHP was used to calculate the criteria and sub-criteria weights under uncertainty and then VIKOR was implemented to rank the classifiers. A case study considering a mobile-based self-management and reminding solution for PwD is described to validate the proposed approach. The results revealed that Easiness of interpretation (GW = 0.192) and Handling of missing data (GW = 0.145) were the two most important criteria. Furthermore, SVM (Qj = 1.0) and AB (Qj = 0.891) were concluded to be the most suitable classifiers for supporting ATS adoption in PwD

    Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disorder which requires a long-term, interdisciplinary disease management. While there remains no cure for Parkinson’s disease, treatments are available to help reduce the main symptoms and maintain quality of life for as long as possible. Owing to the global burden faced by chronic conditions such as PD, Assistive technologies (AT’s) are becoming an increasingly common prescribed form of treatment. Low adoption is hampering the potential of digital technologies within health and social care. It is then necessary to employ classification algorithms have been developed for differentiating adopters and non-adopters of these technologies; thereby, potential negative effects on people with PD and cost overruns can be further minimized. This paper bridges this gap by extending the Multi-criteria decision-making approach adopted in technology adoption modeling for people with dementia. First, the fuzzy Analytic Hierarchy Process (FAHP) is applied to estimate the initial relative weights of criteria and sub-criteria. Then, the Decisionmaking Trial and Evaluation Laboratory (DEMATEL) is used for evaluating the interrelations and feedback among criteria and sub-criteria. The Technique for Order of Preferences by Similarity to Ideal Solution (TOPSIS) is finally implemented to rank three classifiers (Lazy IBk – knearest neighbors, Naïve bayes, and J48 decision tree) according to their ability to model technology adoption. A real case study considering is presented to validate the proposed approach

    Discrete-Event Simulation for Performance Evaluation and Improvement of Gynecology Outpatient Departments: A Case Study in the Public Sector

    Get PDF
    Gynecology outpatient units are in charge of treating different gynecological diseases such as tumorous, cancer, urinary incontinence, gynecological pain, and abnormal discharge. On-time attention is thus needed to avoid severe complications, patient dissatisfaction, and elevated healthcare costs. There is then an urgent need for assessing whether the gynecology outpatient departments are cost-effective and what interventions are required for improving clinical outcomes. Despite this context, the studies directly concentrating on diagnosis and improvement of these departments are widely limited. To address these concerns, this paper aims to provide a Discrete-event Simulation (DES) modelling framework to help healthcare managers gain a better understanding of the gynecology outpatient services and evaluate improvement strategies. First, the patient journey through the gynecology outpatient service is mapped. To correctly represent the system uncertainty, collected data is then processed through input analysis. Third, the data is used to model and simulate the real gynecology outpatient unit. This model is later validated to determine whether it is statistically equivalent to the real system. After this, using performance metrics derived from the simulation model, the gynecology outpatient department is analyzed to identify potential improvements. We finally pretest potential interventions to define their viability during implementation. A case study of a mixed-patient type environment in a public gynecology outpatient unit is presented to verify the applicability of the proposed methodology. The results evidenced that appointment lead times could be efficiently reduced using this approach. © 2019, Springer Nature Switzerland AG

    Navigability of temporal networks in hyperbolic space

    Get PDF
    Information routing is one of the main tasks in many complex networks with a communication function. Maps produced by embedding the networks in hyperbolic space can assist this task enabling the implementation of efficient navigation strategies. However, only static maps have been considered so far, while navigation in more realistic situations, where the network structure may vary in time, remains largely unexplored. Here, we analyze the navigability of real networks by using greedy routing in hyperbolic space, where the nodes are subject to a stochastic activation-inactivation dynamics. We find that such dynamics enhances navigability with respect to the static case. Interestingly, there exists an optimal intermediate activation value, which ensures the best trade-off between the increase in the number of successful paths and a limited growth of their length. Contrary to expectations, the enhanced navigability is robust even when the most connected nodes inactivate with very high probability. Finally, our results indicate that some real networks are ultranavigable and remain highly navigable even if the network structure is extremely unsteady. These findings have important implications for the design and evaluation of efficient routing protocols that account for the temporal nature of real complex networks
    • 

    corecore