71 research outputs found

    Glucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB

    Get PDF
    Chronic exposure of pancreatic beta-cells to saturated free fatty acids (FFAs) causes endoplasmic reticulum (ER) stress and apoptosis and may contribute to beta-cell loss in type 2 diabetes. Here, we evaluated the molecular mechanisms involved in the protection of beta-cells from lipotoxic ER stress by glucagon-like peptide (GLP)-1 agonists utilized in the treatment of type 2 diabetes.info:eu-repo/semantics/publishe

    Toxoplasma gondii in beef consumed in France: Regional variation in seroprevalence and parasite isolation

    Get PDF
    In France, the consumption of cattle and sheep meat appears to be a risk factor for infection of pregnant women with Toxoplasma gondii. Several nation-wide surveys in France have investigated the prevalence of T. gondii in sheep and pig meat, but little is known at present about the prevalence of the parasite in beef. The main objective of the present cross-sectional survey was to estimate the seroprevalence of T. gondii infection in beef consumed in France. A secondary objective was to attempt to isolate T. gondii from cattle tissues and to study the geographical and age variations of this seroprevalence. The overall estimate of seroprevalence of T. gondii in bovine carcasses (n = 2912), for a threshold of 1:6 was 17.38%. A strong age effect was observed (p lt 0.0001) with a seroprevalence of 5.34% for calves ( lt 8 months) and 23.12% for adults ( gt 8 months). Seroprevalence estimates given by area of birth and area of slaughtering for adults showed that the areas with the highest seroprevalence were not the same between these two variables. Only two strains, corresponding to genotype II, were isolated from heart samples, indicating that there is a limited risk of human infection with T. gondii, which needs to be correlated with the food habit of consuming raw or undercook (bleu or saignant) beef. However, new questions have emerged, especially concerning the isolation of parasites from beef and the precise role of bovines, generally described as poor hosts for T. gondii, in human infection

    Nuclear factor κB-inducing kinase activation as a mechanism of pancreatic β cell failure in obesity

    Get PDF
    The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB-inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell-intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity

    Effect of Diacerein on Insulin Secretion and Metabolic Control in Drug-Naïve Patients With Type 2 Diabetes: A randomized clinical trial

    Get PDF
    OBJECTIVE - To assess the effect of diacerein on insulin secretion and metabolic control in drug-naïve patients with type 2 diabetes. RESEARCH DESIGN AND METHODS - A randomized, double-blind, placebo-controlled clinical trial was carried out in 40 drug-naïve adult patients with type 2 diabetes. A metabolic profile including interleukin (IL)-1β, tumor necrosis factor-a, IL-6, and fasting insulin levelswas carried out before the intervention and 2months afterward. A hyperglycemic-hyperinsulinemic clamp technique was performed to assess the phases of insulin secretion and insulin sensitivity. After randomization, 20 patients received diacerein (50mg once daily) for the first 15 days and twice daily for 45 additional days. The remaining patients received placebo. Intra- and intergroup differences were calculated by Wilcoxon signed rank and Mann-Whitney U tests. RESULTS-Therewere significant increases in first (102 ± 63 vs. 130 ± 75 pmol/L; P<0.01), late (219 ± 111 vs. 280 ± 135 pmol/L; P<0.01), and total insulin (178691 vs. 216699pmol/L; P<0.01) secretionswithout changes in insulin sensitivity after diacerein administration. There were significant decreases in fasting glucose (7.9 ± 1.4 vs. 6.8 ± 1.0mmol/L; P<0.01) and in A1C levels (8.3 ± 1.0 vs. 7.0 ± 0.8%; P < 0.001) after diacerein administration. There were no significant changes after placebo administration in the above-mentioned evaluations. CONCLUSIONS - Insulin secretion increased and metabolic control improved after diacerein administration in drug-naïve patients with type 2 diabetes. © 2011 by the American Diabetes Association

    MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic β-cell responses to the viral by-product double-stranded RNA

    Get PDF
    β-Cell destruction in type 1 diabetes (T1D) is at least in part consequence of a ‘dialog’ between β-cells and immune system. This dialog may be affected by the individual's genetic background. We presently evaluated whether modulation of MDA5 and PTPN2, two candidate genes for T1D, affects β-cell responses to double-stranded RNA (dsRNA), a by-product of viral replication. These genes were selected following comparison between known candidate genes for T1D and genes expressed in pancreatic β-cells, as identified in previous array analysis. INS-1E cells and primary fluorescence-activated cell sorting-purified rat β-cells were transfected with small interference RNAs (siRNAs) targeting MDA5 or PTPN2 and subsequently exposed to intracellular synthetic dsRNA (polyinosinic–polycitidilic acid—PIC). Real-time RT–PCR, western blot and viability assays were performed to characterize gene/protein expression and viability. PIC increased MDA5 and PTPN2 mRNA expression, which was inhibited by the specific siRNAs. PIC triggered apoptosis in INS-1E and primary β-cells and this was augmented by PTPN2 knockdown (KD), although inhibition of MDA5 did not modify PIC-induced apoptosis. In contrast, MDA5 silencing decreased PIC-induced cytokine and chemokine expression, although inhibition of PTPN2 induced minor or no changes in these inflammatory mediators. These findings indicate that changes in MDA5 and PTPN2 expression modify β-cell responses to dsRNA. MDA5 regulates inflammatory signals, whereas PTPN2 may function as a defence mechanism against pro-apoptotic signals generated by dsRNA. These two candidate genes for T1D may thus modulate β-cell apoptosis and/or local release of inflammatory mediators in the course of a viral infection by acting, at least in part, at the pancreatic β-cell level

    JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells

    Get PDF
    Cytokines contribute to pancreatic β-cell apoptosis in type 1 diabetes (T1D) by modulation of β-cell gene expression networks. The transcription factor Activator Protein-1 (AP-1) is a key regulator of inflammation and apoptosis. We presently evaluated the function of the AP-1 subunit JunB in cytokine-mediated β-cell dysfunction and death. The cytokines IL-1β+IFN-γ induced an early and transitory upregulation of JunB by NF-κB activation. Knockdown of JunB by RNA interference increased cytokine-mediated expression of inducible nitric oxide synthase (iNOS) and endoplasmic reticulum (ER) stress markers, leading to increased apoptosis in an insulin-producing cell line (INS-1E) and in purified rat primary β-cells. JunB knockdown β-cells and junB−/− fibroblasts were also more sensitive to the chemical ER stressor cyclopiazonic acid (CPA). Conversely, adenoviral-mediated overexpression of JunB diminished iNOS and ER markers expression and protected β-cells from cytokine-induced cell death. These findings demonstrate a novel and unexpected role for JunB as a regulator of defense mechanisms against cytokine- and ER stress-mediated apoptosis

    Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-cells are extremely rich in zinc and zinc homeostasis is regulated by zinc transporter proteins. β-cells are sensitive to cytokines, interleukin-1β (IL-1β) has been associated with β-cell dysfunction and -death in both type 1 and type 2 diabetes. This study explores the regulation of zinc transporters following cytokine exposure.</p> <p>Methods</p> <p>The effects of cytokines IL-1β, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) on zinc transporter gene expression were measured in INS-1-cells and rat pancreatic islets. Being the more sensitive transporter, we further explored ZnT8 (Slc30A8): the effect of ZnT8 over expression on cytokine induced apoptosis was investigated as well as expression of the insulin gene and two apoptosis associated genes, BAX and BCL2.</p> <p>Results</p> <p>Our results showed a dynamic response of genes responsible for β-cell zinc homeostasis to cytokines: IL-1β down regulated a number of zinc-transporters, most strikingly ZnT8 in both islets and INS-1 cells. The effect was even more pronounced when mixing the cytokines. TNF-α had little effect on zinc transporter expression. IFN-γ down regulated a number of zinc transporters. Insulin expression was down regulated by all cytokines. ZnT8 over expressing cells were more sensitive to IL-1β induced apoptosis whereas no differences were observed with IFN-γ, TNF-α, or a mixture of cytokines.</p> <p>Conclusion</p> <p>The zinc transporting system in β-cells is influenced by the exposure to cytokines. Particularly ZnT8, which has been associated with the development of diabetes, seems to be cytokine sensitive.</p

    Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis

    Get PDF
    For more than a decade, researchers have been trying to develop non-invasive imaging techniques for the in vivo measurement of viable pancreatic beta cells. However, in spite of intense research efforts, only one tracer for positron emission tomography (PET) imaging is currently under clinical evaluation. To many diabetologists it may remain unclear why the imaging world struggles to develop an effective method for non-invasive beta cell imaging (BCI), which could be useful for both research and clinical purposes. Here, we provide a concise overview of the obstacles and challenges encountered on the way to such BCI, in both native and transplanted islets. We discuss the major difficulties posed by the anatomical and cell biological features of pancreatic islets, as well as the chemical and physical limits of the main imaging modalities, with special focus on PET, SPECT and MRI. We conclude by indicating new avenues for future research in the field, based on several remarkable recent results
    corecore