509 research outputs found

    Modelling environment for the design and optimisation of energy polygeneration systems

    Get PDF
    The optimal design and operation of an energy supply system is very important for the matching of the energy production and consumption especially in the residential-tertiary sector characterized by an energy demand with a high variability. The main objective of this thesis is to develop an optimisation environment for the preliminary design and analysis of polygeneration plants. The optimisation models are organized in different units represented by blocks that can be connected between each other to create the flowsheet of the polygeneration system. To characterize the energy demand in the residential and tertiary sector a graphic methodology has been developed to select typical energy demand days from a yearly energy demand profile. The environment developed has been applied to two case studies: a small scale polygeneration plant using a liquid desiccant system for air conditioning and a polygeneration plant connected to a district heating and cooling network

    Pobles germans

    Get PDF

    Els pronoms: una nova visiĂł

    Get PDF

    CamĂ­ del coll del boc

    Get PDF

    "Tireu endavant i estigueu tranquils"

    Get PDF

    Aberration compensation for objective phase curvature in phase holographic microscopy: comment

    Get PDF
    In a recent Letter by Seo et al. [Opt. Lett. 37, 4976 (2012)], the numerical correction of the quadratic phase distortion introduced by the microscope objective in digital holographic microscopy (DHM) has been presented. In this comment, we would like to draw to the attention of the authors and the readers in general that this approach could not be the optimal solution for maintaining the accuracy of the quantitative phase via DHM. We recall that the use of telecentric imaging systems in DHM simplifies the numerical processing of the phase images and produces more accurate measurements

    Digital holographic microscopy as a screening technology for diabetes

    Get PDF
    Label-free quantitative phase imaging (QPI) is the hallmark of digital holographic microscopy (DHM). One of the most interesting medical applications of QPI-DHM is that it can be used to analyze illnesses in which the refractive index or/and the morphology of cells/tissues are distorted, from the acquisition of a single image. In this contribution, we obtain the phase maps of red blood cells (RBCs) samples of patients suffering from diabetes mellitus type 1 (DM1) by using a DHM. Our experimental results show that the measured phase values are significantly different between control non-diabetic and diabetic patients. The high correlation coefficient between the phase and the glycated hemoglobin (HbA1C) values determined by the gold standard method to screen diabetes and the clear separation between the two groups indicate that DHM may potentially be used to evaluate long-term glycemic control in diabetic patients as well as to diagnose diabetes
    • …
    corecore