3,598 research outputs found
Finite-Size Effects in Lattice QCD with Dynamical Wilson Fermions
As computing resources are limited, choosing the parameters for a full
Lattice QCD simulation always amounts to a compromise between the competing
objectives of a lattice spacing as small, quarks as light, and a volume as
large as possible. Aiming to push unquenched simulations with the Wilson action
towards the computationally expensive regime of small quark masses we address
the question whether one can possibly save computing time by extrapolating
results from small lattices to the infinite volume, prior to the usual chiral
and continuum extrapolations. In the present work the systematic volume
dependence of simulated pion and nucleon masses is investigated and compared
with a long-standing analytic formula by Luescher and with results from Chiral
Perturbation Theory. We analyze data from Hybrid Monte Carlo simulations with
the standard (unimproved) two-flavor Wilson action at two different lattice
spacings of a=0.08fm and 0.13fm. The quark masses considered correspond to
approximately 85 and 50% (at the smaller a) and 36% (at the larger a) of the
strange quark mass. At each quark mass we study at least three different
lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08fm).Comment: 21 pages, 20 figures, REVTeX 4; v2: caption of Fig.7 corrected, one
reference adde
Volume dependence of light hadron masses in full lattice QCD
The aim of the GRAL project is to simulate full QCD with standard Wilson
fermions at light quark masses on small to medium-sized lattices and to obtain
infinite-volume results by extrapolation. In order to establish the functional
form of the volume dependence we study systematically the finite-size effects
in the light hadron spectrum. We give an update on the status of the GRAL
project and show that our simulation data for the light hadron masses depend
exponentially on the lattice size.Comment: 3 pages, 1 figure, Lattice2003(spectrum
Light Quark Masses with Wilson Fermions
We present new data on the mass of the light and strange quarks from
SESAM/TL. The results were obtained on lattice-volumes of
and points, with the possibility to investigate finite-size
effects. Since the SESAM/TL ensembles at have been
complemented by configurations with , moreover, we are now able to
attempt the continuum extrapolation (CE) of the quark masses with standard
Wilson fermions.Comment: Lattice2001(spectrum), minor correction
Time resolution below 100 ps for the SciTil detector of PANDA employing SiPM
The barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR in
Darmstadt is planned as a scintillator tile hodoscope (SciTil) using 8000 small
scintillator tiles. It will provide fast event timing for a software trigger in
the otherwise trigger-less data acquisition scheme of PANDA, relative timing in
a multiple track event topology as well as additional particle identification
in the low momentum region. The goal is to achieve a time resolution of sigma ~
100 ps. We have conducted measurements using organic scintillators coupled to
Silicon Photomultipliers (SiPM). The results are encouraging such that we are
confident to reach the required time resolution.Comment: 10 pages, 7 figure
Interplanetary propulsion using inertial fusion
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed
A High Precision Study of the QQ(bar) Potential from Wilson Loops in the Regime of String Breaking
For lattice QCD with two sea quark flavours we compute the static quark
antiquark potential V(R) in the regime where string breaking is expected. In
order to increase statistics, we make full use of the lattice information by
including all lattice vectors R to any possible lattice separation in the
infrared regime. The corresponding paths between the lattice points are
constructed by means of a generalized Bresenham algorithm as known from
computer graphics. As a results we achieve a determination of the unquenched
potential in the range .8 to 1.5 fm with hitherto unknown precision.
Furthermore, we demonstrate some error reducing methods for the evaluation of
the transition matrix element between two- and four-quark states.Comment: 6 pages, 7 figure
- …