As computing resources are limited, choosing the parameters for a full
Lattice QCD simulation always amounts to a compromise between the competing
objectives of a lattice spacing as small, quarks as light, and a volume as
large as possible. Aiming to push unquenched simulations with the Wilson action
towards the computationally expensive regime of small quark masses we address
the question whether one can possibly save computing time by extrapolating
results from small lattices to the infinite volume, prior to the usual chiral
and continuum extrapolations. In the present work the systematic volume
dependence of simulated pion and nucleon masses is investigated and compared
with a long-standing analytic formula by Luescher and with results from Chiral
Perturbation Theory. We analyze data from Hybrid Monte Carlo simulations with
the standard (unimproved) two-flavor Wilson action at two different lattice
spacings of a=0.08fm and 0.13fm. The quark masses considered correspond to
approximately 85 and 50% (at the smaller a) and 36% (at the larger a) of the
strange quark mass. At each quark mass we study at least three different
lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08fm).Comment: 21 pages, 20 figures, REVTeX 4; v2: caption of Fig.7 corrected, one
reference adde