3,932 research outputs found
A homogenization theorem for Langevin systems with an application to Hamiltonian dynamics
This paper studies homogenization of stochastic differential systems. The
standard example of this phenomenon is the small mass limit of Hamiltonian
systems. We consider this case first from the heuristic point of view,
stressing the role of detailed balance and presenting the heuristics based on a
multiscale expansion. This is used to propose a physical interpretation of
recent results by the authors, as well as to motivate a new theorem proven
here. Its main content is a sufficient condition, expressed in terms of
solvability of an associated partial differential equation ("the cell
problem"), under which the homogenization limit of an SDE is calculated
explicitly. The general theorem is applied to a class of systems, satisfying a
generalized detailed balance condition with a position-dependent temperature.Comment: 32 page
Secure pseudo-random linear binary sequences generators based on arithmetic polynoms
We present a new approach to constructing of pseudo-random binary sequences
(PRS) generators for the purpose of cryptographic data protection, secured from
the perpetrator's attacks, caused by generation of masses of hardware errors
and faults. The new method is based on use of linear polynomial arithmetic for
the realization of systems of boolean characteristic functions of PRS'
generators. "Arithmetizatio" of systems of logic formulas has allowed to apply
mathematical apparatus of residue systems for multisequencing of the process of
PRS generation and organizing control of computing errors, caused by hardware
faults. This has guaranteed high security of PRS generator's functioning and,
consequently, security of tools for cryptographic data protection based on
those PRSs
A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds
The Newton iteration is a popular method for minimising a cost function on
Euclidean space. Various generalisations to cost functions defined on manifolds
appear in the literature. In each case, the convergence rate of the generalised
Newton iteration needed establishing from first principles. The present paper
presents a framework for generalising iterative methods from Euclidean space to
manifolds that ensures local convergence rates are preserved. It applies to any
(memoryless) iterative method computing a coordinate independent property of a
function (such as a zero or a local minimum). All possible Newton methods on
manifolds are believed to come under this framework. Changes of coordinates,
and not any Riemannian structure, are shown to play a natural role in lifting
the Newton method to a manifold. The framework also gives new insight into the
design of Newton methods in general.Comment: 36 page
Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis
Background: There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment.
Objective: The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another.
Methods: We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting.
Results: We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in ??-nearest neighbor with ??=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption.
Conclusions: The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner
Dietary elimination of children with food protein induced gastrointestinal allergy – micronutrient adequacy with and without a hypoallergenic formula?
Background:
The cornerstone for management of Food protein-induced gastrointestinal allergy (FPGIA) is dietary exclusion; however the micronutrient intake of this population has been poorly studied. We set out to determine the dietary intake of children on an elimination diet for this food allergy and hypothesised that the type of elimination diet and the presence of a hypoallergenic formula (HF) significantly impacts on micronutrient intake.
Method:
A prospective observational study was conducted on children diagnosed with FPIGA on an exclusion diet who completed a 3 day semi-quantitative food diary 4 weeks after commencing the diet. Nutritional intake where HF was used was compared to those without HF, with or without a vitamin and mineral supplement (VMS).
Results:
One-hundred-and-five food diaries were included in the data analysis: 70 boys (66.7%) with median age of 21.8 months [IQR: 10 - 67.7]. Fifty-three children (50.5%) consumed a HF and the volume of consumption was correlated to micronutrient intake. Significantly (p <0.05) more children reached their micronutrient requirements if a HF was consumed. In those without a HF, some continued not to achieve requirements in particular for vitamin D and zinc, in spite of VMS.
Conclusion:
This study points towards the important micronutrient contribution of a HF in children with FPIGA. Children, who are not on a HF and without a VMS, are at increased risk of low intakes in particular vitamin D and zinc. Further studies need to be performed, to assess whether dietary intake translates into actual biological deficiencies
Recommended from our members
Structured squaring down and zero assignment
The problem of zero assignment by squaring down is considered for a system of p-inputs, n-outputs and n-states (m > p), where not all outputs are free variables for design. We consider the case where a k-subset of outputs is preserved in the new output set, and the rest are recombined to produce a total new set of p-outputs. New invariants for the problem are introduced which include a new class of fixed zeros and the methodology of the global linearization, developed originally for the output feedback pole assignment problem, is applied to this restricted form of the squaring down problem. It is shown that the problem can be solved generically if (p − k)(m − p) > δ*, where k (k < p) is the number of fixed outputs and δ* is a system and compensation scheme invariant, which is defined as the restricted Forney degree
Predicting Distribution of Aedes Aegypti and Culex Pipiens Complex, Potential Vectors of Rift Valley Fever Virus in Relation to Disease Epidemics in East Africa.
The East African region has experienced several Rift Valley fever (RVF) outbreaks since the 1930s. The objective of this study was to identify distributions of potential disease vectors in relation to disease epidemics. Understanding disease vector potential distributions is a major concern for disease transmission dynamics. DIVERSE ECOLOGICAL NICHE MODELLING TECHNIQUES HAVE BEEN DEVELOPED FOR THIS PURPOSE: we present a maximum entropy (Maxent) approach for estimating distributions of potential RVF vectors in un-sampled areas in East Africa. We modelled the distribution of two species of mosquitoes (Aedes aegypti and Culex pipiens complex) responsible for potential maintenance and amplification of the virus, respectively. Predicted distributions of environmentally suitable areas in East Africa were based on the presence-only occurrence data derived from our entomological study in Ngorongoro District in northern Tanzania. Our model predicted potential suitable areas with high success rates of 90.9% for A. aegypti and 91.6% for C. pipiens complex. Model performance was statistically significantly better than random for both species. Most suitable sites for the two vectors were predicted in central and northwestern Tanzania with previous disease epidemics. Other important risk areas include western Lake Victoria, northern parts of Lake Malawi, and the Rift Valley region of Kenya. Findings from this study show distributions of vectors had biological and epidemiological significance in relation to disease outbreak hotspots, and hence provide guidance for the selection of sampling areas for RVF vectors during inter-epidemic periods
The Sound of Topology in the AdS/CFT Correspondence
Using the gauge/gravity correspondence, we study the properties of 2-point
correlation functions of finite-temperature strongly coupled gauge field
theories, defined on a curved space of general spatial topology with a dual
black hole description. We derive approximate asymptotic expressions for the
correlation functions and their poles, supported by exact numerical
calculations, and study their dependence on the dimension of spacetime and the
spatial topology. The asymptotic structure of the correlation functions depends
on the relation between the spatial curvature and the temperature, and is
noticeable when they are of the same order. In the case of a hyperbolic
topology, a specific temperature is identified for which exact analytical
solutions exist for all types of perturbations. The asymptotic structure of the
correlation functions poles is found to behave in a non-smooth manner when
approaching this temperature.Comment: 65 pages, LaTeX, 21 figures, 1 table; fixed a small error in
subsection 3.
Incompressible Fluids of the de Sitter Horizon and Beyond
There are (at least) two surfaces of particular interest in eternal de Sitter
space. One is the timelike hypersurface constituting the lab wall of a static
patch observer and the other is the future boundary of global de Sitter space.
We study both linear and non-linear deformations of four-dimensional de Sitter
space which obey the Einstein equation. Our deformations leave the induced
conformal metric and trace of the extrinsic curvature unchanged for a fixed
hypersurface. This hypersurface is either timelike within the static patch or
spacelike in the future diamond. We require the deformations to be regular at
the future horizon of the static patch observer. For linearized perturbations
in the future diamond, this corresponds to imposing incoming flux solely from
the future horizon of a single static patch observer. When the slices are
arbitrarily close to the cosmological horizon, the finite deformations are
characterized by solutions to the incompressible Navier-Stokes equation for
both spacelike and timelike hypersurfaces. We then study, at the level of
linearized gravity, the change in the discrete dispersion relation as we push
the timelike hypersurface toward the worldline of the static patch. Finally, we
study the spectrum of linearized solutions as the spacelike slices are pushed
to future infinity and relate our calculations to analogous ones in the context
of massless topological black holes in AdS.Comment: 27 pages, 8 figure
Nudging Cooperation in a Crowd Experiment
We examine the hypothesis that driven by a competition heuristic, people don't even reflect or consider whether a cooperation strategy may be better. As a paradigmatic example of this behavior we propose the zero-sum game fallacy, according to which people believe that resources are fixed even when they are not. We demonstrate that people only cooperate if the competitive heuristic is explicitly overridden in an experiment in which participants play two rounds of a game in which competition is suboptimal. The observed spontaneous behavior for most players was to compete. Then participants were explicitly reminded that the competing strategy may not be optimal. This minor intervention boosted cooperation, implying that competition does not result from lack of trust or willingness to cooperate but instead from the inability to inhibit the competition bias. This activity was performed in a controlled laboratory setting and also as a crowd experiment. Understanding the psychological underpinnings of these behaviors may help us improve cooperation and thus may have vast practical consequences to our society.Fil: Niella, Tamara. Universidad Torcuato di Tella; ArgentinaFil: Stier, Nicolas. Universidad Torcuato di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sigman, Mariano. Universidad Torcuato di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
- …
