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The problem of zero assignment by squaring down is considered for a system of p-inputs,

n-outputs and n-states (m> p), where not all outputs are free variables for design. We consider

the case where a k-subset of outputs is preserved in the new output set, and the rest are

recombined to produce a total new set of p-outputs. New invariants for the problem are

introduced which include a new class of fixed zeros and the methodology of the global

linearization, developed originally for the output feedback pole assignment problem, is applied

to this restricted form of the squaring down problem. It is shown that the problem can be

solved generically if ( p� k)(m� p)> �*, where k (k< p) is the number of fixed outputs and

�* is a system and compensation scheme invariant, which is defined as the restricted

Forney degree.

1. Introduction

Transfer function models produced at the end of

process synthesis and overall instrumentation

are usually large dimension models containing many

physical variables as inputs and outputs. In general,

such models are non-square and have more inputs and

outputs than those that can be used for control design

and are frequently referred to as progenitor models

(Karcanias and Vafiadis 2002a,b). Deriving system

models with a smaller set of effective inputs, outputs

leads to new transfer functions, which are seen as the

results of pre-compensation (input variable reduction)

and post-compensation (output variable reduction)

(Karcanias 1992, 1994). Such transformations may

be assumed to be constant (fast dynamics of the

instrumentation scheme) and the resulting models may

be square, or non-square. Such models are referred to

as input-, output-reduced models and their structure

evolves from that of the original progenitor model

(containing all available input and output variables)

(Karcanias and Vafiadis 2002a). The study of the

structure of the input-, output-reduced models as a

function of the pre- and post-compensation schemes and

the original structure of the progenitor model is one of

the central problems of integrated control and instru-

mentation design and it is frequently referred to as

model projection problems (Karcanias 1992, 1994).

Such problems are within the general area of

structure assignment problems (Loiseau et al. 1997,

Vardoulakis 1980). This family of problems contains as

a sub-problem the standard squaring down problem

(Kouvaritakis and MacFarlane 1976, Karcanias and

Giannakopoulos 1989) as well as the problems of well

conditioning of early system models (Karcanias and

Vafiadis 2002a). This paper deals with a restricted

version of the standard squaring down problem

(fewer degrees of freedom than the general problem),

which is more frequently met in applications; this

involves the fixing of a number k, k< p, of the desirable

outputs to be elements of the original set and the use

of all m variables to produce p-k linear combinations

to define additional outputs, which together with the

fixed k variables yield the effective p output set. Deriving

the p-k linear combinations involves post-compensation

that affects the structure of the resulting square

transfer function. The assignment of the zeros of this

transfer function is the problem considered here.*Corresponding author. Email: n.karcanias@city.ac.uk



The general squaring down problem (Kouvaritakis

and MacFarlane 1976, Karcanias and Giannakopoulos

1989) belongs to the family of determinantal assignment

problems (DAP). The DAP approach (Karcanias

and Giannakopoulos 1984) has been formulated as

a unifying approach for all problems of frequency

assignment (pole, zero) and they are problems of

multilinear nature and they may be naturally split

into a linear and multilinear problem. The final solution

is thus reduced to the solvability of a set of linear

equations (characterizing the linear problem), together

with quadratics (characterizing the multilinear problem

of decomposability). The approach heavily relies

on exterior algebra (Marcus, 1973) and this

has implications on the computability of solutions

(reconstruction of solutions whenever they exist) and

introduces new sets of invariants, which in

turn characterize the solvability of the problem. The

reduction of the restricted squaring down to an

equivalent free squaring down is an integral part of

our approach; this involves the transferring of the

restricted structure of the compensation scheme to an

appropriate system representation that allows use of

the ‘‘free DAP’’ formulation and also leads to the

definition of the fixed zeros of the problem. These zeros

are those of the original system and new fixed zeros

are introduced by the restricted structure of the scheme.

The distinct advantages of the restricted DAP approach

that is used here are: (i) it provides the means for

defining the additional fixed zeros of the problem in an

explicit way that also allows the structure redesign

to avoid the formation of undesirable invariant

features (such as non-minimum phase characteristics).

(ii) Enables the use of the ‘‘free DAP’’ approach that can

handle both generic and exact solvability investigations

(using intersection theory of algebraic varieties), and

thus leads to new criteria for the characterization of

solvability of different problems. (iii) Provides a

systematic procedure for computing the solutions

using the new system and compensator structure

dependent invariants and the recently developed

method of the Global Linearization Framework

(Leventides and Karcanias, 1995a) that provides

a new powerful technique for establishing solvability

conditions of DAP type problems, as well as

computing them.

The general problem of squaring down by constant

pre-compensation has been introduced in Rosenbrock

and Rowe (1970), Kouvaritakis and MacFarlane (1976)

and studied using an exterior algebra formulation in

Karcanias and Giannakopoulos (1989); state space

methods for the study of the problem have been used

in Kouvaritakis and MacFarlane (1976), Karcanias and

Kouvaritakis (1979) and Saberi and Sannuti (1990).

Although conditions for solvability of the ‘‘free squaring

down’’ problem have been previously derived,

no method for handling solvability and computation

of solutions have been derived so far, that can also

address the ‘‘partially fixed’’ nature of the compensator

structure and its implications. The current approach

follows the determinantal assignment problem formula-

tion deployed in Karcanias and Giannakopoulos (1989)

and uses the global linearization methodology developed

for the pole assignment by output feedback (Leventides

and Karcanias 1995a). There are similarities between

the general squaring down and the pole assignment by

output feedback problems, as far as their mathematical

formulation; however, the restricted versions differ

significantly due to the nature of the new invariants

(expressing the structure of the compensator on

the system representation), the possible creation of

additional ‘‘fixed zeros’’, the fewer degrees of freedom

and their implications for the proof of results in the

generic case. This makes the study of the restricted

version an interesting problem with practical signifi-

cance for control design, since the current framework

allows the use of the restricted structure as a design

parameter. Apart from providing new results for this

interesting case, the paper introduces an explicit way

for computing the additional ‘‘fixed zeros’’ resulting

by the partially fixed structure of the compensator and

develops a new computational procedure for finding

the zero assigning squaring down compensators

based on the tools provided by the global linearization.

The current framework enables the use of the partially

fixed structure of the compensator as a design param-

eter, which may be appropriately adjusted to avoid

additional undesirable fixed zeros. Regarding the

solvability of the zero assignment of the free zeros of

the problem, It is shown that the restricted form of the

squaring down problem can be solved generically if

( p� k)(m� p)> �*, where k (k< p) is the number of

fixed outputs and �* is a new invariant associated with

the system and expressing the restricted structure of

the problem, which is referred to as the restricted Forney

degree. The solvability conditions are based on the

properties of the invariants of the exterior algebra

framework (Karcanias and Giannakopoulos 1984);

the current approach has the potential to handle the

generic, as well as the non-generic cases. The results

derived for the restricted problem also apply to the case

of the full squaring down and then become equivalent to

those in Karcanias and Giannakopoulos (1989), while

at the same time provide a systematic computational

framework for finding solutions (when such solutions

exist), which is simplest than the solution of linear and
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quadratic equations (quadratic Plucker relations) of the

mainstream DAP approach. The explicit role of the

squaring down structure in the shaping of the solvability

conditions provides a framework for deriving a design

methodology where the compensator structure becomes

a design parameter.

Throughout the paper we shall denote by Rn�p the

set of n� p real matrices and Z
þ, the positive integers.

The rank of a matrix A is denoted by rank(A) and

N rðAÞ, N ‘ðAÞ, denote its right, left nullspace. R[s]

denotes the set of polynomials with coefficients from

the reals, R, and if t(s) 2 R[s], then deg[t(s)] denotes

its degree. Finally, if a property is said to be true

for i2 n
�
, n2Z

þ, this means it is true for all 1 � i � n.

2. Problem definition and preliminary results

2.1 The restricted squaring down problem

Consider the linear system described by

SðA,B,C,DÞ :
_x ¼ Axþ Bu, A2Rn�n, B2Rn�p

y ¼ Cxþ Eu, C2Rm�n, E2Rm�p

)

ð1Þ

where (A, B) is controllable, (A, C ) is observable.

Equivalently, the system is represented by the transfer

function matrix G(s)¼C(sI�A)�1BþE, where

rankR(s){G(s)}¼min{m, p}. In terms of left, right

coprime matrix fraction descriptions (Kailath 1980),

G(s) may be represented as

GðsÞ ¼ D‘ðsÞ
�1N‘ðsÞ ¼ NrðsÞDrðsÞ

�1; ð2Þ

where N‘(s), Nr(s) 2 Rm�p[s], D‘(s) 2 Rm�m[s] and

Dr(s) 2 Rp�p[s]. The system will be called square if

m¼ p and non-square if m 6¼ p.

For a system with m> p we can expect to have

independent control over at most p linear combinations

of m outputs. If C2Rp is the vector of the variables

which are to be controlled, then C ¼ Ky, where

K2Rp�m is a squaring down postcompensator, and

G0(s)¼KG(s) is the squared down transfer function

matrix. A right MFD for G0(s) is defined by

G0(s)¼KNr(s)Dr(s)
�1 where G(s)¼Nr(s)Dr(s)

�1.

Finding K such that G0(s) has assigned zeros is defined

as the zero assignment by squaring down problem. The

zero polynomial of S(A,B,KC,KE ) is then given by

zkðsÞ ¼ detfKNrðsÞg: ð3Þ

A special form of the general squaring down is the

restricted form that preserves a k-subset y1 of the

original set of outputs, k< p, and this without loss of

generality may be defined by

z ¼ Kfy ¼
Ik 0

k1 k2

� �

y
1

y
2

" #

: ð4Þ

Clearly, such compensators have fewer degrees of

freedom than the full K compensator; this form of the

problem will be referred to as k-restricted squaring down

(k-RSD), k referring to the number of fixed variables,

and it is the subject of the current investigation.

2.2 The general constant DAP

The general squaring down and the restricted version

belong to the family of the determinantal assignment

problem (DAP) (Karcanias and Giannakopoulos 1984),

that is the study of solutions of the equation (5) with

respect to a design matrixH. In fact, letMðsÞ 2R½s�p�r½s�,
r� p, be such that rank(M(s))¼ r and let {H} be a family

of full rank r� p constant matrices having a certain

structure. The problem is to solve with respect to

H2 fHg the equation:

fMðs,H Þ ¼ detðHMðsÞÞ ¼ fðsÞ, ð5Þ

where f(s) is a real polynomial of an appropriate

degree d.

Remark (1): The degree of f(s) depends on the degree

of M(s) as well as on the structure of H; however,

in most cases, the degree of f(s) is equal to the degree

of M(s).

The determinantal assignment problem has two main

aspects. The first has to do with the solvability

conditions for the problem and the second, whenever

this problem is solvable, to provide methods for

constructing the solutions.

Notation (Marcus and Minc 1964): Let Qk,n denote

the set of lexicographically ordered, strictly increasing

sequences of k integers from {1, . . . , n}. If fxi1 , . . . , xikg
is a set of vectors of a vector space

V, ! ¼ ði1, . . . , ikÞ 2Qk, n, then we denote by

xi1 ^ � � � ^ xik ¼ x!^ their exterior product. If H2Fm�n

and r�min{m, n}, then by Cr(H) we denote the rth

compound matrix of H.

If hti , miðsÞ, i2 r, denotes the rows of H, columns of

M(s) respectively, then

CrðH Þ ¼ ht1 ^ � � � ^ htr ¼ ht ^ 2R1��,

CrðMðsÞÞ ¼ m1ðsÞ ^ � � � ^mrðsÞ

¼ m ^ 2R�½s�, � ¼
p

r

� �

ð6Þ
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and by the Binet–Cauchy theorem (Marcus and

Minc 1964) we have that

fMðs,H Þ ¼ CrðH ÞCrðMðsÞÞ ¼5 h ^,mðsÞ ^4

¼
X

!2Qr, p

h!m!ðsÞ, ð7Þ

where h�, �i denotes inner product, ! ¼ ði1, . . . , irÞ 2Qr, p,

and h!, m!(s) are the coordinates of h ^,mðsÞ^
respectively. Note that h! is the r� r minor of H

which corresponds to the ! set of columns ofH and thus

h! is a multilinear alternating function of the entries hij
of H. Thus, the study of the zero structure of the

multilinear function fM(s,H) may be reduced to a linear

sub-problem and a standard multilinear algebra pro-

blem as it is shown below (Karcanias and

Giannakopoulos 1984).

(i) Linear subproblem of DAP: Set

mðsÞ^ ¼ pðsÞ 2R�½s�. Determine whether there

exists a k2R�, k 6¼ 0, such that

fMðs, kÞ ¼ kt � pðsÞ ¼
X

kipiðsÞ ¼ fðsÞ,

i2 �, fðsÞ 2R½s�: ð8Þ

(ii) Multilinear subproblem of DAP: Assume that {�}

is the family of solution vectors k of (7). Determine

whether there exists Ht ¼ ½h1, . . . , hr�, where

Ht 2Rp�r, such that

h1 ^ � � � ^ hr ¼ h^ ¼ k, k2 f�g ð9Þ

Polynomials defined by equation (8) are called poly-

nomial combinants and the zero assignability of them

provides necessary conditions for the solution of the

DAP. The solution of the exterior equation (9) is

a standard problem of exterior algebra and it is known

as decomposability of multivectors (Marcus 1973).

The multi-vectors mðsÞ^ introduce system invariants

(Karcanias and Giannakopoulos 1984) which play

a crucial role for the solvability of DAP and for the

case of the squaring down problem are defined below.

Column Plucker matrices: For the transfer function

G(s), m� p, we denote by nðsÞ^ the exterior product of

the columns of the numerator Nr(s), of a RCMFD and

by P(N) the

m

p

� �

� ðdþ 1Þ

basis matrix of nðsÞ^. Note that d ¼ degfnðsÞ^g ¼ �, is

the Forney order (Forney, 1975) of the column rational

vector space Xg of G(s), if G(s) has no finite zeros and

d ¼ �þ �, where � is the number of finite zeros of

G(s), otherwise (Karcanias and Giannakopoulos 1984).

If Nr(s) is least degree (has no finite zeros), then P(N)

will be called the column space Plucker matrix of

the system.

The essence of the DAP approach is projective, that is

we use a natural embedding for determinantal problems

to embed the space of the unknown, H, of DAP, into

an appropriate projective space. In this way we can view

DAP as a search for common solutions of some set

of linear equations and another set of second order

polynomial equations. This study requires to compactify

H into H# and then use algebraic geometric, or

topological intersection theory methods (Leventides

and Karcanias 1995b) to determine existence of

real solutions for the above sets of equations.

The characteristic of the approach is that it allows the

use of algebraic geometry and topological methods for

the study of solvability conditions but also provides a

natural setup for computations. Central to the latter is

the solution of the linear system derived by (7) with the

quadratics characterizing the solvability of (8), which

are known as quadratic Plucker relations (QPR)

(Marcus 1973). A new method for the study of DAP

has been recently developed based on the linearization

of the (5) polynomial combinant. This method is based

on special sequences of compensators K which in the

limit converge to a so called degenerate squaring down.

This technique is referred to as global linearization

(Leventides and Karcanias 1995a, 1996) and has the

advantage that it asymptotically reduces the multilinear

problem to a linear one without reducing the number of

free parameters in the compensator. These techniques

will be used for the study of the restricted squaring down

problem subsequently. The above technique provides

an explicit exterior algebra based framework, which

may be studied using as an alternative tool the Grobner

basis theory (Becker and Weispfenning 1993). This

framework is within the overall algebraic geometry

approach for control theory (Brockett and Byrnes 1981,

Helton et al. 1997, Wang 1994).

3. The restricted squaring down problem and

its invariants

3.1 Problem formulation

Consider a system of p-inputs, m-outputs and n-states

with m> p. Defining a set of p effective outputs out

of the available m outputs, that can be independently

controlled, is realized by a transformation that is

represented as a static post-compensation. Using such

compensators K we obtain a family of systems described

by the set of transfer functions:

� ¼ fKGðsÞ 2Rp�pðsÞ : K2Rp�mg: ð10Þ
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The post compensator K is assumed to be full rank, but

it is otherwise arbitrary. A special subset of the general

family of such compensators are those which fix some of

the outputs; this corresponds to the design requirement

where some variables must be measured and controlled

as they appear in the original set and then recombine

the rest of the variables such that to produce a number

of p outputs. Such restricted forms may be represented

by matrices having the following general structure:

K ¼

x � � � x 0 x � � � x 0 x � � � x 0 x x

x � � � x 0 x � � � x 0 x � � � x 0 x x

.

.

.
� � � .

.

.
.
.
.

.

.

.
� � � .

.

.
.
.
.

.

.

.
� � � .

.

.
.
.
.

.

.

.
.
.
.

0 � � � 0 1 0 � � � 0 0 0 � � � 0 0 0 0

0 � � � 0 0 0 � � � 0 1 0 � � � 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

� � � x 0 x x

x � � � x 0 x � � � x 0 x � � � x 1 0 0

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

ð11Þ

and can be represented as

K ¼ QKfR, ð12Þ

where Q, R are permutation matrices and Kf is the

matrix defined by (4) where K1, K2 are arbitrary

matrices. Note that given the k-set of output variables

which are to be preserved, then the permutation

matrices Q and R are defined. The structure of Kf

defines a normalized representation of the K-restricted

family of compensators. The subfamily of the systems

of � which correspond to restricted compensators is

denoted by �r and the set of compensators having a

given fixed structure (as defined above) is denoted by

�k. The systems in � are square and their zeros are

given as the roots of the equation

DetðKNrðsÞÞ ¼ 0: ð13Þ

The representation of the restricted squaring down

compensators, given by (12), may be further simplified

as shown below:

Proposition (1): The family of restricted squaring down

compensators �k corresponding to a given set of k-fixed

outputs may be represented as

K � ¼
Ik 0

0 �K

� �

R ¼ KR, ð14Þ

where R is a permutation matrix and �K is an arbitrary

matrix.

Proof: It is obvious that for any K given as in (12) we

can always find a full rank matrix ~Q such that K� ¼ ~QK.

It is clear that since detf ~Qg ¼ c 6¼ 0, the polynomials

Det(KNr(s))¼ cDet(K *Nr(s)) have the same roots and

thus we can use the parametrization in (14) for the study

of the restricted squaring down. œ

Remark 2: The permutation matrix R in (14) may

always be standardized for any k-fixed set of outputs.

In fact, using the structure of K as shown in (11) we can

define R as the column permutation matrix acting on K

that shifts all standard basis column vectors appearing

in K to the front and with the order they appear.

Such action produces a unique matrix R that is defined

from the given fixed set of outputs. The matrix Rmay be

referred as the permutation matrix of the k-fixed given

set of outputs.

The above suggest that the zero polynomial under the

restricted squaring down may be expressed as

zðsÞ ¼ Detf �K R NrðsÞg ¼ Detf �K N�
r ðsÞg, ð15Þ

where N�
r ðsÞ is a matrix obtained from the original

numerator by the R permutation of its rows. This matrix

will be referred as the R-numerator and it is

defined from any right numerator and the given

matrix R. If we partition the R-numerator as

N�
r ðsÞ ¼

N11ðsÞ

N12ðsÞ

� �

ð16Þ

then the family of numerators of squared down systems

under restricted squaring down may be expressed as

N̂ðsÞ ¼
I 0

0 �K

� �

N11ðsÞ

N12ðsÞ

� �

N11ðsÞ

�KN12ðsÞ

� �

: ð17Þ

The above expression will be used for the study of the

problem, which is now defined as selecting a full rank �K

matrix such that the polynomial z(s) has assignable

zeros, where z(s) is defined by:

zðsÞ ¼ Det
I 0

0 �K

� �

N11ðsÞ

N12ðsÞ

� �

: ð18Þ

3.2 Fixed zeros of the restricted squaring down problem

The partially fixed structure of the compensation scheme

may introduce some constraints for the arbitrary

zero assignment, which are expressed as ‘‘fixed zeros’’.

These fixed zeros are associated with the partially fixed

nature of the compensator and are independent from

the numerical values in the compensator. The character-

ization of these ‘‘fixed zeros’’ is examined next. Consider

the ‘‘squared down’’ numerator N̂ðsÞ where
�K 2Rðp�kÞ�ðm�kÞ is arbitrary and NrðsÞ 2 Rm�p½s� is the

original numerator. If Zr(s) is a right gcd matrix of

NrðsÞ, ZrðsÞ 2Rp�p½s�, then

N̂ðsÞ ¼
N11ðsÞ

�KN12ðsÞ

� �

ZrðsÞ ð19Þ

5



and thus

zðsÞ ¼ N̂ðsÞ
�

�

�

�

�

� ¼ det
N11ðsÞ

�KN12ðsÞ

� �� �

: ZrðsÞ
�

�

�

�: ð20Þ

The characterization of fixed zeros is given by the

following result.

Proposition 2: For the k-restricted squaring down

problem the following properties hold true:

(i) The zeros of the original system, as defined by the

zeros of jZrðsÞj are also zeros of all systems in the

family � of squared down systems.

(ii) If N11ðsÞ 2Rk�p½s� is not a least degree matrix and

N11ðsÞ ¼ Z‘ðsÞN11ðsÞ, where Z‘ðsÞ is a left gcd of

N11ðsÞ, then the zeros of jZ‘ðsÞj are also fixed zeros

for all elements in the family �.

(iii) The overall zero polynomial under all restricted

squared down compensators is given by

zðsÞ ¼ N
_

ðsÞ
�

�

�

�

�

� ¼ Z‘ðsÞ
�

�

�

�

�N11ðsÞ

�KN12ðsÞ

" #�

�

�

�

�

�

�

�

�

�

� jZrðsÞj ð21Þ

where jZ‘ðsÞj, jZrðsÞj express fixed polynomials and

the assignable polynomial is

~zðsÞ ¼ det
�N11ðsÞ

�KN12ðsÞ

" #( )

: ð22Þ

œ

The study of the equation (21) is facilitated by the

reduction of the restricted version to an equivalent

general squaring down problem and this reduction

introduces some additional fixed zeros. The assignment

of zeros of (22) is not in the standard DAP form

(Karcanias and Giannakopoulos 1984); however, this

extended DAP form may be reduced to the

standard form; this requires some manipulation to

make �K to appear explicitly as a design parameter. We

examine next the basic properties of the associated

zero assignment map and then produce an algebraic

formulation that show the equivalence of the restricted

squaring down to that of an equivalent free DAP

formulation. This analysis introduces new invariants for

the restricted problem.

3.3 Properties of the frequency assignment map

The frequency assignment map associated with the

problem is defined by equation (22) and it is the map

ssigning K to the coefficient vector of ~zðsÞ ¼ p(s), p,

associated with a polynomial pðsÞ 2R½s�, that is:

F : Rn ! Rðp�kÞ�ðm�kÞ ! Rdþ1

Fð �KÞ ¼ ’ ð23Þ

The zero assignment problem is to find �K such that

F( �K)¼ p for a given p. Clearly, a system has the

arbitrary zero assignment property if F is onto.

An important family of compensators, which is crucial

for the problem, is the family of the so called degenerate

compensators. A compensator �K is degenerate, if

Fð �KÞ ¼ 0, or equivalently

I 0

0 �K

� �

Nr � ðsÞ

�

�

�

�

�

�

�

�

¼ 0: ð24Þ

In other words, �K is degenerate if the numerator of

the squared down system becomes singular. The notion

of degenerate feedback was introduced in Brockett

and Byrnes (1981) for the case of output feedback and

it is now extended to the case of squaring down. The

following result shows the importance of degenerate

compensators since it establishes the very important

property that if the zero assignment map is locally

onto at a degenerate compensator, then the map is

globally onto.

Theorem 1: If there exists a degenerate matrix �K0

such that the differential DF �K0
is onto, then any

polynomial of degree d can be assigned via some static

compensator.

Proof: The map F comes from a determinantal

expansion of ( p� k)�( p� k) determinant and hence

has the property that

Fðl �KÞ ¼ l
p�kFð �KÞ

Since DF �K0
is onto and Fð �K0Þ ¼ 0, the map F is locally

onto at a neighbourhood of 0, and therefore the image

of F contains a sphere S(0, ") for some ">0. To prove

that F is globally onto we consider any p2Rdþ1 and we

construct a K such that Fð �KÞ ¼ p. To do so we select a

positive l0 such that jl0j5
ffiffiffiffiffiffiffiffiffiffiffiffi

"=kpkp�k
p

. For this l0 we have

that klp�k
0 pk < ". The vector l

p�k
0 p constructed this way

belongs to S(0, "). Since F is onto in the neighborhood

S(0,�), there exists a �K1 such that Fð �K1Þ ¼ l
p�k
0 p.

For this K1 we have that Fðl�1
0

�K1Þ ¼ p, proving that

F is onto. œ

The above result suggests that degenerate solutions

provide the means for developing a sufficient approach

for studying zero assignment using special forms of

squaring down; such an approach is known as global

linearization methodology (Leventides and Karcanias

1995a, 1996) and will be developed for the special case

of restricted squaring down here. This solution is based

on the construction of a degenerate structured compen-

sator for this specific problem so that the differential

of the zero assignment map on this compensator is onto.

The specific structure of the problem produces new

system invariants, based on the partitioning of the

6



numerator matrix Nr(s) induced by the structure of Kf,

as defined in (4).

3.4 Reduction of partially fixed squaring down

to an equivalent free problem

An alternative more convenient reduction of the original

restricted compensator formulation to a standard

determinantal assignment is considered next. In fact, if

we partition N�
r ðsÞ as in (16) (conformally to diag(Ik, �K)),

then the previous problem formulation is reduced to

zðsÞ ¼
N11ðsÞ
�KN12ðsÞ

� ��

�

�

�

�

�

�

�

ð25Þ

which leads to an equivalent standard DAP formulation

and reveals the nature of invariants characterizing the

solvability of the problem.

Theorem 2: Let V(s) be a least degree polynomial basis

for the p� k dimensional right kernel of N11(s) then

zðsÞ ¼
N11ðsÞ

�KN12ðsÞ

�

�

�

�

�

�

�

�

¼ z1ðsÞ �KN12ðsÞVðsÞ
�

�

�

�zrðsÞ, ð26Þ

where z1(s) is the zero polynomial of N11(s) and zr(s) is the

zero polynomial of the non-square system.

Proof: Consider a unimodular transformation U(s)

such that

N11ðsÞUðsÞ ¼ Z‘ðsÞ 0
	 


,

where Z‘(s) is the k� k greatest common left divisor of

N11(s). By partitioning the p� p unimodular matrix

UðsÞ ¼ ½WðsÞ, VðsÞ�, where W(s) is p� k and V(s) is

p�( p� k), then

N11ðsÞWðsÞ ¼ Z‘ðsÞ N11ðsÞVðsÞ ¼ 0 ð27aÞ

and

det
N11ðsÞ

KN12ðsÞ

" #

¼ det
N11ðsÞ

KN12ðsÞ

" #

U

 !

¼ det
N11ðsÞWðsÞ N11ðsÞVðsÞ

KN12ðsÞWðsÞ KN12ðsÞVðsÞ

" #

¼ det
Z‘ðsÞ 0

KN12ðsÞWðsÞ KN12ðsÞVðsÞ

" #

¼ det KN12ðsÞVðsÞ
�

�

�

� det ZlðsÞ ð27bÞ

and this proves the result where z‘(s)¼ detZ‘(s) and

zr(s)¼detZr(s). œ

The matrix M(s)¼N12(s)V(s) defined above provides an

equivalent ‘‘free’’ squaring down formulation of the

problem and will be referred to as the generator of

the restricted squaring down problem. From the above

result we have the following obvious remark.

Remark 3: For the restricted squaring down the

equivalent formulation of equation (26) indicates the

following set of invariants.

(i) The zero structure of N11(s) as defined by the

greatest left matrix divisors is a problem invariant.

(ii) The assignability of additional zeros depends on

the R[s]-column module defined by the matrix

MðsÞ ¼ N12ðsÞVðsÞ 2R½s�ðm�kÞ�ðp�kÞ ð28Þ

and its corresponding Plucker matrix, which is also

an invariant of the problem.

Corollary 1: Let M(s)¼M *(s)Z *(s) be a factorization

(m> p), where M *(s) is a least degree basis for the

R[s]-column module of M(s), Z *(s) is a greatest right

divisor and let z *(s)¼ |Z *(s)|. The zero polynomial of the

k-RSD is then given by

zðsÞ ¼ detðKM�ðsÞÞzlðsÞzrðsÞz
�ðsÞ ð29Þ

where zf(s)¼ zl(s)zr(s)z*(s) is the fixed zero polynomial

of k-RSD.

Remark 4: By inspection of equation (29) we have

that the assignable polynomial of the k-RSD is

~zðsÞ ¼ det( �KM *(s)) and that

degNrðsÞ � degN12ðsÞVðsÞ þ degZ1ðsÞ � degð ~ZðsÞÞ ð30Þ

which indicates that the number of assignable zeros

of the restricted squaring down can be less than the same

number of the full case.

If Cp�k(M *(s))¼ g�r (s)¼P* e�*þ1(s), then P* is referred

to as the k-RSD Plucker matrix and �* is the

corresponding restricted Forney order. Clearly,

the linear part of the problem (condition (8)), yields

the following result:

Corollary 2: Necessary condition for arbitrary zero

assignment of the k-RSD is that rank(P*)¼ �*þ1.

3.5 Properties of the generator matrix of the restricted

squaring down

The formulation of the restricted problem indicates the

significance of the partitioning of the right numerator

and the definition of the generator polynomial matrix

M(s). We examine next the relationship of the generator

matrix M(s) to the state space parameters of the model

and establish some properties for this new problem

invariant.
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Lemma 1 (Karcanias and Mitrouli, 2002): For the

linear system S(A,B,C,E ) with a transfer function G(s),

let X(s), U(s) be a pair of polynomial matrices defining

a minimal basis for Nrð½ sI� A �B �Þ, i.e.

sI �A �B
	 
 XðsÞ

UðsÞ

� �

¼ 0 ð31Þ

then, a right coprime MFD for G(s)¼Nr(s)Dr(s)
�1 is

defined by

NrðsÞ ¼ CXðsÞ þ EUðsÞ, DrðsÞ ¼ UðsÞ ð32Þ

Proposition 3: For the linear system S(A,B,C,E)

consider the restricted squaring down that corresponds

to a partition ½N11ðsÞ
t N12ðsÞ

t �t of the right numerator,

and let the corresponding partitioning of the output

matrix be

C 0 E 0
	 


¼ R C E
	 


¼
C1 E1

C2 E2

� �

, ð33Þ

where R is the transformation matrix in (15). The matrix

M(s) generating the k-RSD is defined by

sI� A �B

C1 E1

� �

X1ðsÞ

U1ðsÞ

� �

¼ 0 ð34Þ

MðsÞ ¼ C2X1ðsÞ þ E2U1ðsÞ: ð35Þ

Proof: If

X1ðsÞ

U1ðsÞ

� �

is as above, then it belongs to the right kernel of

½ sI� A �B � and therefore, for some V(s)

X1ðsÞ

U1ðsÞ

� �

¼
XðsÞ

UðsÞ

� �

VðsÞ, ð36Þ

where X(s), U(s) are as in Lemma 1. However, by

Lemma 1

N11ðsÞVðsÞ ¼ C1 E1

	 
 XðsÞ

UðsÞ

� �

VðsÞ

¼ C1 E1

	 
 X1ðsÞ

U1ðsÞ

� �

¼ 0 ð37Þ

proving that V(s) is a right kernel for N11(s).

By Lemma 1 we may establish the result by calculating:

C2X1ðsÞ þ E2U1ðsÞ ¼ ½C2XðsÞ þ E2UðsÞ�VðsÞ

¼ N12ðsÞVðsÞ ¼ MðsÞ: ð38Þ

œ

The relationship between the generic degree of Nr(s)

and the corresponding matrix for the restricted problem

defined by MðsÞ ¼ N12ðsÞVðsÞ, is considered next.

The correspondence J(N(s))¼M(s) defines a map

between two related polynomial modules. If d¼ �* is

the Forney order of any minimal basis of the module

generated by M(s) (Forney 1975),
Pd

j, lis the set of all

‘-dimensional polynomial modules in R‘ [s] whose

degree is less than or equal to d, which are represented

by basis matrices of j� ‘ dimensions, then J is a map

between
Pd

m, p !
Pd

m�k, p�k. The following result

establishes that this map is onto.

Proposition 4: The map J:
Pd

m, p !
Pd

m�k, p�k such that

JðNðsÞÞ ¼ N12ðsÞVðsÞ is onto.

Proof: Let M(s) be an element of
Pd

m�k, p�k and

consider an N(s) in
Pd

m, p of the form

NðsÞ ¼
Ik 0

0 MðsÞ

� �

ð39Þ

Then N11(s)¼ [Ik, 0] and N12(s)¼ [0, M(s)]. Therefore

VðsÞ ¼
0

Ip�k

� �

and

JðNðsÞÞ ¼ N12ðsÞVðsÞ ¼ 0 MðsÞ
	 
 0

Ip�k

� �

¼ MðsÞ ð40Þ

which proves the result. œ

From the above it follows that for a generic N(s) of

degree d, J(N(s)) has degree d and not less, since the

set of all modules of degree less than d is a proper

subvariety of
Pd

m�k, p�k.

The establishment of generic solvability results is

based on the number of independent degrees of freedom,

which in our case are ( p� k)�(m� p), as well as

the number of equations/constraints which are defined

by, �*, the Forney order of the R[s]-module column-

span(N12ðsÞVðsÞ). Central to the current approach is the

construction of a degenerate static squaring down

compensator on which the differential of the related

zero assignment map is onto.

4. Solvability conditions

The work so far has revealed that the restricted squaring

down is equivalent to a free squaring down defined on

a generator matrix M(s) that has a structure specified

from the restricted scheme. Theorem 1 shows that

the existence of a degenerate squaring down with certain

properties is sufficient to guarantee zero assignability.

The existence and construction of degenerate

compensators (Brockett and Byrnes 1981), which are

instrumental to the current approach is considered next.

Both the generic and the exact versions of the problem
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are considered; the derived results clearly specialize

to the full squaring down problem (Karcanias and

Giannakopoulos 1989).

4.1 The generic case and its solvability

The construction of degenerate K-RSDs is crucial

for our methodology and it is considered first.

Proposition 5: Let d be the least Forney index of the R[s]

module generated by M(s) and let X(s) be such a least

degree vector with a (m� k)�(dþ 1) basis (coefficient)

matrix Xr. A sufficient condition for the existence of

a degenerate full rank compensator �K0 is that m� p > d.

If this condition is satisfied, then �K0 is defined as a full

rank matrix satisfying �K0Xr¼ 0.

Proof: The proof of the above result follows along the

lines developed for pole assignment in Leventides and

Karcanias 1995a). Since detð �K0MðsÞÞ ¼ 0 the matrix
�K0MðsÞ is rank deficient. This means that �K0 is in the left

kernel of a polynomial vector xðsÞ of the column span of

M(s). For this to be true, if d is the degree of xðsÞ, it is
sufficient that m� k� ðdþ 1Þ � p� k which is equiva-

lent to m� p > d. œ

Next we examine the conditions for the generic

solvability of the problem.

Theorem 3: For a generic system of p-inputs, m-outputs

and n-states, the problem of arbitrary zero assignment by

static k-RSD, K, K2�k can be solved if

ðp� kÞðm� pÞ > �� ð41Þ

where k is the number of fixed outputs and �* is the

Forney order of M(s).

Proof: The proof of the result is based on genericity

arguments. In fact the zero assignability property of

systems defines a Zarisky open set in the family

of systems and proof of the result is equivalent to

showing that this set is nonempty. It suffices to prove

that we can construct a system which satisfies the

conditions of the theorem. To construct such a system

we consider the set of the generic Forney dynamical

indices corresponding to M(s) which are defined via

the Euclidean division of �* by p� k. Thus,

if �� ¼ ðp� kÞ�þ u, where u < p� k, then m� p > �.

If we now consider as M(s) the matrix as indicated

in (42), then we can define a numerator partitioned as

shown below in (42) which leads to the above M(s)

matrix i.e.,

NrðsÞ ¼
Ik 0kx p�kð Þ

0 m�kð Þxk MðsÞ

� �

¼
N11ðsÞ
N12ðsÞ

� �

: ð42Þ

Therefore N12ðsÞVðsÞ ¼ MðsÞ. A degenerate full rank

compensator is constructed from the last column

of M(s) and it is given by the matrix indicated in (44).

For this compensator the matrix K0MðsÞ has the form

indicated in (45). Then, by setting d ¼ �� we have that

uðsÞ ¼ sd�� �sd�2� � � � 1
	 


is basis for the left kernel

of K0MðsÞ and e¼ [0,0, . . . , 0,1]t is the right kernel of

K0MðsÞ giving rise to a vector w(s) as defined in (46).

The coefficient matrix of the tensor product is then given

by equation (47) and this produces a basis for the

differential of zero assignment map (Leventides and

Karcanias 1995a, 1996)

MðsÞ ¼

s�þ1 0 .
.
.

0 0 .
.
.

.

.

.
0

1 s�þ1 .
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 1 .
.

.
0 .

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0 .

.
.

s�þ1 0

.

.

.
.
.
.

.

.

.
1 s� .

.
.

.

.

.
.
.
.

.

.

.
1 .

.
.

0 0

.

.

.
.
.
.

.

.

.
.
.

.
s� 0

.

.

.
.
.
.

.

.

.
1 s�

.

.

.
.
.
.

.

.

.
0 s��1

0 0 .
.
.

0 s��2

0 0 � � � 0

.

.

.

0

1

.

.

.

1

0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð43Þ

K0 ¼

1 0 � � � 0 0 � � � 0 0 � � � 0 � � � 0

0 1 � � � 0 0 � � � 0 0 � � � 0 � � � 0

.

.

.
.
.
.

.
.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 0 .
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 1 .
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.
.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 � � � 0 0 � � � 1 0 � � � 0 � � � .
.
.

0 0 � � � 0 0 � � � 0 0 � � � 0 � � � 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð44Þ

K0MðsÞ ¼

s�þ1

1

0

.

.

.

.

.

.

0

0

s�þ1

1

.

.

.

.

.

.

0

� � �

� � �

.
.

.

.
.

.

� � �

� � �

.
.

.

1

0

0

.

.

.

.

.

.

s�

1

0

.

.

.

.

.

.

0

0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð45Þ
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wðsÞ ¼ MðsÞe ¼

0

.

.

.

0

s�

s
��1

.

.

.

1

0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð46Þ

uðsÞ 	 wðsÞ ¼ sd sd�1 � � � 1
	 


ð47Þ

This coefficient matrix contains the identity matrix

Idþ1 and this proves that the differential of the zero

assignment map at K0 is therefore onto.

Consider now the subset U, of
Pd

m, p which is defined

as U ¼ {S: DK0J(S) has full rank}. This is a Zarisky open

subset of
Pd

m, p which when it is non-empty contains

almost all points with the exception of a subvariety of

smaller dimension. The example we have constructed

above guarantees nonemptiness; therefore, a generic

system of p-inputs, m-outputs and n-states has a

degenerate compensator for the k-RSD zero assignment

problem, which has full rank differential and therefore

it is onto. Hence a generic such system has the arbitrary

zero assignability property. œ

The global linearization framework which has been

developed for the pole assignment problem (Leventides

and Karcanias 1995a, 1996) can be adjusted to the case

of squaring down and k-restricted squaring down and

this is described below:

4.2 Global linearization algorithm for restricted

squaring down

Consider the system described by the right MFD pair

(Nr(s),Dr(s)) and a family of k-RSD compensators as

in (14). Let Nr(s)¼N(s)Zr(s), where N(s) is a least degree

basis and Zr(s) a greatest right divisor. We partition

accordingly N1(s)¼RN(s), where R is the permutation

matrix in (14), and derive the matrices N11(s), N12(s).

If Z‘(s) is a greatest left divisor of N11(s) and V(s) is a

right annihilator of N11(s), then the matrix generating

the k-restricted squaring down is M(s)¼N12(s)V(s).

The matrix M(s) has dimensions (m� k)�( p� k) and

if Z*(s) is a greatest right divisor of M(s) then

M(s)¼M *(s)Z *(s) where M *(s) is a least degree basis

for the R[s]-module defined by the columns of M *(s).

The zero polynomial under the k-RSD is expressed as

zðs,KÞ ¼ detðKM�ðsÞÞzfðsÞ, ð48Þ

where zfðsÞ is the fixed polynomial under the k-restricted

squaring down and it is expressed as

zfðsÞ ¼ jZlðsÞkZ
�ðsÞkZrðsÞj: ð49Þ

The Algorithm: The algorithm of global linearization

aims at assigning the roots of the assignable part of the

zero polynomial and uses M*(s) as the generator of

the corresponding determinantal problem. This involves

the following steps.

Step 1: Consider a vector mðsÞ in col-span(M*(s))

such that its degree r satisfies the condition m� p > r.

Then a basis matrix K0 for a p-dimensional subspace of

the left null space of the coefficient matrix Pm of mðsÞ is
a degenerate compensator.

Step 2: Calculate DF �K0
the differential of the zero

assignment map at the specific degenerate compensator.

If this map is onto then we have complete zero

assignability and we proceed to the next step, otherwise

we go to the step 1.

Step 3: Apply the Quasi-Newton algorithm to com-

pute compensators that assign the zero structure and

which are at a distance from the degenerate squaring

down compensator. We shall denote by xj ¼ vecðKiÞ the
vector representation of the matrix Ki and the algorithm

is then expressed as

xiþ1 ¼ xi � ðJFÞ�1
xnk�1

ðFðxiÞ � "kpÞ nk�1 < i � nk

k ¼ 1, . . . , r, . . . n0 ¼ 0, . . . , xn0 ¼ vecðK0Þ

0 < "1 < "2 < � � � < "k < � � �

9

>

=

>

;

ð50Þ

where p is the coefficient vector of the desired

polynomial, F is the zero placement map, JF is the

Jacobian matrix representing the differential of the

zero assignment map and K0 is the full degenerate

compensator. In other words, starting from

x0 ¼ vec(K0), the full degenerate compensator, and "1
sufficiently small we get a series of compensators

represented by the vectors x0, x1, . . . , xn1 so that the

iteration xiþ1 ¼ xi � ðJFÞ�1
x0
ðFðxiÞ � "1pÞ converges.

Then we increase "1 to "2 and get another sequence

xn1þ1, xn1þ2, . . . , xn2 so that the iteration

xiþ1 ¼ xi � ðJFÞ�1
xn1

ðFðxiÞ � "2pÞ, n1 < i � n2 converges.

We repeat the process for k¼ 3, 4 . . . until k¼ r where

"r is sufficiently high. The final solution is given by xnr .

The Jacobian of F (JF) can be easily computed as F is

an algebraic polynomial map. The above algorithm

is based on the following philosophy: If we denote by

�(’) the family of all compensators placing the zeros at

the given locations p(sz), then a degenerate compensa-

tor, with full rank differential, is a boundary point for

all manifolds �( p) corresponding to different p’s.

Using as a starting point the degenerate perturbation

(which can be readily computed as shown before)

10



and selecting "1 sufficiently small the Newton-Raphson

algorithm produces solution �1 on �( p) which are at

the distance from the boundary point. Repeating now

the method starting this time from �1 and with a new

step "2 we produce �2 on �( p) and so on.

Remark 5: An alternative formulation of the above

algorithm is to replace step 3 by any homotopy

continuation method (Ortega and Rheiboldt 2000,

Tsachouridis et al. 1980), that is use the homotopy

H : Rðp�kÞ�ðm�kÞ � R ! R��þ1 ð51Þ

such that

HðK, "Þ ¼ fðKÞ � "p, ð52Þ

where for "¼ 0, �(K, 0)¼ 0 has an easy solution,

namely the degenerate compensator which has to be

continuously deformed to a solution of H(K, 1)¼ 0

which is the required solution.

Example 1: Consider a system of 5 outputs 3 inputs,

whose numerator matrix is given by

NðsÞ ¼

sþ 1 sþ 2 s

2sþ 3 �sþ 1 s

sþ 5 2s �2sþ 1

1 sþ 1 s� 1

2 2 sþ 3

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

and assume that we would like to square it down to

a three output system keeping the first output as it is.

In this case N11ðsÞ ¼ [sþ 1, sþ 2, s] and K is of the form

K ¼

1 0 0 0 0

0 x x x x

0 x x x x

2

6

4

3

7

5

the right kernel for N11ðsÞ is given by V(s) as shown

below

VðsÞ ¼

0 �2

�s 1

sþ 2 1

2

6

4

3

7

5

and

N12ðsÞVðsÞ ¼

2s2 þ s �4s� 5

�4s2 � 3sþ 2 �2s� 9

�2 2s� 2

s2 þ 3sþ 6 sþ 1

2

6

6

6

4

3

7

7

7

5

:

A degenerate compensator for N12(s)V(s) is a static

matrix K0 which satisfies

K0½�4s� 5, � 2s� 9, 2s� 2, sþ 1�t ¼ ½0, 0�t:

Solving the above we get a degenerate compensator

K0 ¼
1 0 �1=4 9=2

0 1 �7=4 11=2

� �

for the problem. Considering now a perturbation

K1¼ ðkijÞ
i¼2, j¼4
i¼1, j¼1 of K0 we calculate the differential of

the zero assignment map of this problem by expanding

the determinant

K0 þ "K1

� �

N12ðsÞVðsÞ
�

�

�

�

¼
1þ "�11ð Þs2 þ "�12sþ "�13 sþ "�12 þ "�14

"�21s
2 þ "�22sþ 1þ "�23 s"�22 þ "�24

�

�

�

�

�

�

�

�

�

�

¼ " s2 s�22 þ �24ð Þ þ s�12 þ �14
� �

þ "2 � � �ð Þ

in this case the differential is given by the limiting

polynomial as " tends to 0 which is

�22s
3 þ �24s

2 þ s�12 þ �14

This means that asymptotically (as "! 0) by changing

the parameters �22, �24, �12, �14 of the perturbation K1

we can assign any zero polynomial of degree 3.

Therefore this degenerate compensator is regular

and one can use it as starting point for a numerical

Quasi-Newton method to place the zeroes of the system

at any polynomial p(s) of degree 3. In fact, by using

the formula

xnþ1 ¼ xn � ðJFÞ�1
x0
ðf� "1pÞ

where x¼(x, y, z,w)T, p¼ [1, 9,2 27, 27]T, f¼ [f3, f2, f1, f0]
T

and x0 ¼(�1/4,9/2,�7/4,11/2)T. Starting with "1¼ 60 the

method converges after 94 (n1¼ 94, r¼ 1) iterations to

x94 ¼(20,3214997, �6,5221932, �58,1924582,

17,1995119). Giving rise to the compensator

K ¼

1 0 0 0 0

0 1 0 20,3215 �6,5222

0 0 1 �58,19246 17,1995

2

6

4

3

7

5

which fixes the first output and transforms the rest

four into two new outputs, giving rise to a square system

of 3-inputs and 3-outputs, whose zero polynomial

is (sþ 3)3.

4.3 The full squaring down problem

The results derived for the restricted version of the

problem also apply to the full version of the problem,

as this is defined by equation (3). In fact, a right MFD

for the squared down transfer function G0(s) is defined

by G0(s)¼KNr(s)Dr (s)
�1 where G(s)¼Nr(s)Dr(s)

�1 and

11



if Zr(s) is a right matrix gcd of NrðsÞ,ZrðsÞ 2Rp�p½s�, then
the zero polynomial of the squared down system is

zkðsÞ ¼ detfK NrðsÞg ¼ detfK �NrðsÞZrðsÞg

¼ detfK �NrðsÞg detfZrðsÞg ð53Þ

Remark 6: The fixed zeros of the full squaring down

are defined by the zeros of the original system and the

number of additional zeros introduced by full squaring

down is defined by � which is the Forney dynamical

order of the column space of G(s) (Forney, 1975). œ

Using �Nr(s) in place of M(s) we can specialize the results

of the restricted case to the full case as follows:

Theorem 4: For a generic system of p-inputs, m-outputs,

n-states and with a Forney dynamical order of the

column space of G(s), �, then the problem of arbitrary

zero assignment by a full static p�m squaring down

compensator K, can be solved if

pðm� pÞ > �: ð54Þ

The computation of solutions is a special case of the

algorithm given for the restricted case when �Nr(s) is in

place of M(s). In this case vectors of degrees defined by

Forney dynamical orders may be used for the computation

of degenerate solutions.

5. Conclusions

The problem of squaring down has been studied so far

in the literature for the case where the squaring down

compensator is free, as far as the selection of its

structure and parameters. The problem of restricted

constant squaring down is the more realistic version

for control design and an approach has been developed

that has the potential to allow the selection of the

partially fixed structure (thus avoiding undesirable

new fixed zeros and selections that cannot guarantee

complete assignment) and also provides a powerful

methodology for computing solutions. The current

approach contains the essentials of a design framework,

by providing: (i) characterization of the structural

characteristics that characterize solvability of assign-

ment problems, (ii) an algorithmic procedure

for computing solutions, when such solutions exist,

(iii) a link between such structural characteristics and

the original parameters to the problem and (iv) the

means for selecting the structure of the restricted

compensator, that enables the design of schemes for

which we avoid formation of undesirable zeros and

guarantee assignment of the new ones. The paper

contributes to both the characterization of existence of

solutions and the development of an integrated design

approach.

The adopted approach is algebraic and it is based on

the method of the global linearization that allows the

derivation of new solvability conditions, as well as the

development of an algorithm for the computation of

solutions. It has been shown that problems with

restrictions on the compensator structure introduce

fixed zeros (in addition to those associated with the

original system). The additional new fixed zeros of the

restricted squaring down have been characterized

and the invariants characterizing the nature of this

new version of determinantal assignment have been

determined. The overall approach for study of solva-

bility and computation of solutions is based on the

reduction of the restricted problem to an equivalent

free squaring down problem, which however has a

structure and invariants determined by the

original system and the compensation scheme under

consideration. Two alternative approaches have been

suggested, where the first is based on the use of Sylvester

expansion of determinants and the second uses a purely

algebraic approach; both lead to new Plücker type

invariants which play a crucial role in defining the

solvability of exact problems. The development of an

efficient methodology for working out solutions

away from the singular compensator is an important

issue under investigation at the moment. The character-

ization of the fixed zeros of the restricted problem

is done in an explicit way and this provides the

means for investigating concrete designs, which avoid

the formation of fixed zeros. The framework

developed here for the study of the restricted squaring

down for zero assignment is rather general and can be

used for more general design problems of similar nature,

such as the decentralized squaring down, relevant

to integrated design during the stage of overall

instrumentation (Karcanias 1996) and study of fixed,

or reduced dynamics squaring down problems (relevant

to cases where sensor dynamics have to be included).

The systematic design of such schemes is the subject

of future work.
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