59 research outputs found

    NOVEL MECHANISM LEADING TO MISMATCH REPAIR DEFICIENCY AND MUTATOR PHENOTYPE

    Get PDF
    DNA mismatch repair (MMR) is a critical genome-maintenance system. It ensures genome stability by correcting mismatches generated during DNA replication, suppressing homologous recombination, and inducing apoptosis in response to severe DNA damage. As a result, defects in MMR lead to genome-wide mutations and susceptibility to both hereditary and sporadic cancer syndromes. The hallmark of cancer cells defective in MMR is their ability to display frequent instability in simple repetitive DNA sequences, a phenomenon called microsatellite instability (MSI). However, only ~70% of the MSI-positive tumors have identifiable MMR gene mutations, indicating that additional factor(s) are responsible for the MSI phenotype in the remaining 30% MSI-tumors. We demonstrate here that phosphorylation of proliferating cell nuclear antigen (PCNA), an MMR component required for the initiation and resynthesis steps of the repair reactions, blocks in vitro MMR. We found that nuclear extracts derived from colorectal cell lines containing high levels of phosphorylated PCNA are not only defective in MMR, but also inhibitory to MMR activity in HeLa extracts. To determine if PCNA phosphorylation inhibits MMR, several PCNA isoforms that mimic phosphorylated or non-phosphorylated PCNA were examined for their effects on MMR activity. We show that all phosphorylated PCNA mimics block MMR at the initiation step but MMR was not affected by the non-phosphorylated mimetic PCNA. In vitro gap-filling experiments reveal that the phosphorylated PCNA induces a mutational frequency several fold higher than non-phosphorylated PCNA. Since PCNA has been shown to interact with MMR initiation factors MutSα and MutLα, we examined the interactions of phosphorylated PCNA with these two initiation factors. Interestingly, PCNA phosphorylation reduces the PCNA-MutSα interaction, but not the PCNA-MutLα interaction. Since PCNA is proposed to transfer MutSα to the mismatch site, the simplest explanation of the result is that PCNA phosphorylation inhibits MMR by blocking MutSα-mismatch binding activity. Taken together, our results reveal that PCNA phosphorylation induces genetic instability by inhibiting MMR at the initiation step and by promoting DNA polymerase-catalyzed mis-incorporations. This study provides a novel mechanism by which posttranslational modifications inhibit MMR, leading to genome instability and tumorigenesis. A second part of the study is to determine MMR function of several MutLα mutants associated with relapse leukemia patients. One of the mutants contains a phenylalanine99 to leucine substitution in the MLH1 subunit of MutLα. We show that this mutation inhibits MMR by blocking both the ATPase activity and the endonuclease activity associated with MutLα, supporting the importance of the MutLα ATPase and the endonuclease activities in MMR

    Arsenic Inhibits DNA Mismatch Repair by Promoting EGFR Expression and PCNA Phosphorylation

    Get PDF
    Both genotoxic and non-genotoxic chemicals can act as carcinogens. However, while genotoxic compounds lead directly to mutations that promote unregulated cell growth, the mechanism by which non-genotoxic carcinogens lead to cellular transformation is poorly understood. Using a model non-genotoxic carcinogen, arsenic, we show here that exposure to arsenic inhibits mismatch repair (MMR) in human cells, possibly through its ability to stimulate epidermal growth factor receptor (EGFR)-dependent tyrosine phosphorylation of proliferating cellular nuclear antigen (PCNA). HeLa cells exposed to exogenous arsenic demonstrate a dose- and time-dependent increase in the levels of EGFR and tyrosine 211-phosphorylated PCNA. Cell extracts derived from arsenic-treated HeLa cells are defective in MMR, and unphosphorylated recombinant PCNA restores normal MMR activity to these extracts. These results suggest a model in which arsenic induces expression of EGFR, which in turn phosphorylates PCNA, and phosphorylated PCNA then inhibits MMR, leading to increased susceptibility to carcinogenesis. This study suggests a putative novel mechanism of action for arsenic and other non-genotoxic carcinogens

    Mechanism of Three-Component Collision to Produce Ultrastable pRNA Three-Way Junction of Phi29 DNA-Packaging Motor by Kinetic Assessment

    Get PDF
    RNA nanotechnology is rapidly emerging. Due to advantageous pharmacokinetics and favorable in vivo biodistribution, RNA nanoparticles have shown promise in targeted delivery of therapeutics. RNA nanotechnology applies bottom-up assembly, thus elucidation of the mechanism of interaction between multiple components is of fundamental importance. The tendency of diminishing concern about RNA instability has accelerated by the finding of the novel thermostable three-way junction (3WJ) motif of the phi29 DNA-packaging motor. The kinetics of these three components, each averaging 18 nucleotides (nt), was investigated to elucidate the mechanism for producing the stable 3WJ. The three fragments coassembled into the 3WJ with extraordinary speed and affinity via a two-step reaction mechanism, 3WJb + 3WJc ↔ 3WJbc + 3WJa ↔ 3WJabc. The first step of reaction between 3WJb and 3WJc is highly dynamic since these two fragments only contain 8 nt for complementation. In the second step, the 3WJa, which contains 17 nt complementary to the 3WJbc complex, locks the unstable 3WJbc complex into a highly stable 3WJ. The resulting pRNA-3WJ is more stable than any of the dimer species as shown in the much more rapid association rates and slowest dissociation rate constant. The second step occurs at a very high association rate that is difficult to quantify, resulting in a rapid formation of a stable 3WJ. Elucidation of the mechanism of three-component collision in producing the ultrastable 3WJ proves a promising platform for bottom-up assembly of RNA nanoparticles as a new class of anion polymers for material science, electronic elements, or therapeutic reagents

    Socioeconomic, familiar and clinical variables associated to caries increment in schoolchildren participating in a dental health program

    Get PDF
    To evaluate socioeconomic, familiar and clinical risk variables associated to caries increment in the children's permanent dentition from seven to 10 years participating in a dental health program. A sample of 301 children from nine public schools participated in the 'Always Smiling Program' took part in this study. They were evaluated for dental caries through dmft and DMF-T indexes along 2 years, and their parents completed a socio-environmental questionnaire containing questions on their income, education and family environment. Survival analysis using Kaplan-Meier method was used to evaluate the effect of the independent variables on caries increment. We verified that socio-environmental variables were not associated with caries increment, while children with experience in primary dentition were 1.5 times more likely to develop caries in permanent dentition compared to those who did not have this experience. Schoolchildren presenting dental caries in primary dentition on baseline had higher risk of developing caries in permanent dentition and this variable should be taken in consideration by managers of dental health programs when prioritizing groups with higher care needs.15112313

    Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells

    Get PDF
    TET2 is a dioxygenase that catalyses multiple steps of 5-methylcytosine oxidation. Although TET2 mutations frequently occur in various types of haematological malignancies, the mechanism by which they increase risk for these cancers remains poorly understood. Here we show that Tet2?/? mice develop spontaneous myeloid, T- and B-cell malignancies after long latencies. Exome sequencing of Tet2?/? tumours reveals accumulation of numerous mutations, including Apc, Nf1, Flt3, Cbl, Notch1 and Mll2, which are recurrently deleted/mutated in human haematological malignancies. Single-cell-targeted sequencing of wild-type and premalignant Tet2?/? Lin?c-Kit+ cells shows higher mutation frequencies in Tet2?/? cells. We further show that the increased mutational burden is particularly high at genomic sites that gained 5-hydroxymethylcytosine, where TET2 normally binds. Furthermore, TET2-mutated myeloid malignancy patients have significantly more mutational events than patients with wild-type TET2. Thus, Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells, suggesting a novel TET2 loss-mediated mechanism of haematological malignancy pathogenesis

    Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells

    Get PDF
    TET2 is a dioxygenase that catalyses multiple steps of 5-methylcytosine oxidation. Although TET2 mutations frequently occur in various types of haematological malignancies, the mechanism by which they increase risk for these cancers remains poorly understood. Here we show that Tet2-/- mice develop spontaneous myeloid, T- and B-cell malignancies after long latencies. Exome sequencing of Tet2-/- tumours reveals accumulation of numerous mutations, including Apc, Nf1, Flt3, Cbl, Notch1 and Mll2, which are recurrently deleted/mutated in human haematological malignancies. Single-cell-targeted sequencing of wild-type and premalignant Tet2-/- Lin-c-Kit+ cells shows higher mutation frequencies in Tet2-/- cells. We further show that the increased mutational burden is particularly high at genomic sites that gained 5-hydroxymethylcytosine, where TET2 normally binds. Furthermore, TET2-mutated myeloid malignancy patients have significantly more mutational events than patients with wild-type TET2. Thus, Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells, suggesting a novel TET2 loss-mediated mechanism of haematological malignancy pathogenesis

    A human MUTYH variant linking colonic polyposis to redox degradation of the [4Fe4S]²⁺ cluster

    Get PDF
    The human DNA repair enzyme MUTYH excises mispaired adenine residues in oxidized DNA. Homozygous MUTYH mutations underlie the autosomal, recessive cancer syndrome MUTYH-associated polyposis. We report a MUTYH variant, p.C306W (c.918C>G), with a tryptophan residue in place of native cysteine, that ligates the [4Fe4S] cluster in a patient with colonic polyposis and family history of early age colon cancer. In bacterial MutY, the [4Fe4S] cluster is redox active, allowing rapid localization to target lesions by long-range, DNA-mediated signalling. In the current study, using DNA electrochemistry, we determine that wild-type MUTYH is similarly redox-active, but MUTYH C306W undergoes rapid oxidative degradation of its cluster to [3Fe4S]^+, with loss of redox signalling. In MUTYH C306W, oxidative cluster degradation leads to decreased DNA binding and enzyme function. This study confirms redox activity in eukaryotic DNA repair proteins and establishes MUTYH C306W as a pathogenic variant, highlighting the essential role of redox signalling by the [4Fe4S] cluster

    A human MUTYH variant linking colonic polyposis to redox degradation of the [4Fe4S]²⁺ cluster

    Get PDF
    The human DNA repair enzyme MUTYH excises mispaired adenine residues in oxidized DNA. Homozygous MUTYH mutations underlie the autosomal, recessive cancer syndrome MUTYH-associated polyposis. We report a MUTYH variant, p.C306W (c.918C>G), with a tryptophan residue in place of native cysteine, that ligates the [4Fe4S] cluster in a patient with colonic polyposis and family history of early age colon cancer. In bacterial MutY, the [4Fe4S] cluster is redox active, allowing rapid localization to target lesions by long-range, DNA-mediated signalling. In the current study, using DNA electrochemistry, we determine that wild-type MUTYH is similarly redox-active, but MUTYH C306W undergoes rapid oxidative degradation of its cluster to [3Fe4S]^+, with loss of redox signalling. In MUTYH C306W, oxidative cluster degradation leads to decreased DNA binding and enzyme function. This study confirms redox activity in eukaryotic DNA repair proteins and establishes MUTYH C306W as a pathogenic variant, highlighting the essential role of redox signalling by the [4Fe4S] cluster
    corecore