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Tet2 loss leads to hypermutagenicity
in haematopoietic stem/progenitor cells
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TET2 is a dioxygenase that catalyses multiple steps of 5-methylcytosine oxidation. Although

TET2 mutations frequently occur in various types of haematological malignancies, the

mechanism by which they increase risk for these cancers remains poorly understood. Here

we show that Tet2� /� mice develop spontaneous myeloid, T- and B-cell malignancies

after long latencies. Exome sequencing of Tet2� /� tumours reveals accumulation of

numerous mutations, including Apc, Nf1, Flt3, Cbl, Notch1 and Mll2, which are recurrently

deleted/mutated in human haematological malignancies. Single-cell-targeted sequencing of

wild-type and premalignant Tet2� /� Lin�c-Kitþ cells shows higher mutation frequencies in

Tet2� /� cells. We further show that the increased mutational burden is particularly high

at genomic sites that gained 5-hydroxymethylcytosine, where TET2 normally binds.

Furthermore, TET2-mutated myeloid malignancy patients have significantly more mutational

events than patients with wild-type TET2. Thus, Tet2 loss leads to hypermutagenicity in

haematopoietic stem/progenitor cells, suggesting a novel TET2 loss-mediated mechanism of

haematological malignancy pathogenesis.
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T
en eleven translocation methylcytosine dioxygenases
(TET1/2/3) catalyse the conversion of 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC) and can

further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carbox-
ylcytosine (5caC)1–3. 5fC and 5caC can then be removed by
thymine DNA glycosylase (TDG) of base excision repair (BER)4.
Alternatively, deamination may occur at 5hmC sites by AID/
APOBEC cytidine deaminases to generate 5-hydroxymethyluracil
(5hmU), which can also be repaired by BER5. Therefore, DNA
methylation and TETs/TDG-BER-driven DNA demethylation
form a complete cycle of dynamic cytosine modifications. The
oxidation and demethylation of 5mC in the genome are regulated
in a sophisticated manner. Genetic inactivation of Tdg and Tets
leads to prominent alterations of CpG modifications at various
gene regulatory regions. This raises the possibility that TETs/
TDG-BER-mediated cytosine modifications may be widespread
across the whole genome.

TET2 is one of the most commonly mutated/deleted genes in
adult myeloid malignancies, including B30% of cases of
myelodysplastic syndrome (MDS), 20% of myeloproliferative
neoplasms (MPNs), 17% of de novo acute myeloid leukaemias
(AMLs), 30% of secondary AMLs and 50–60% of chronic
myelomonocytic leukaemias6–9. Somatic TET2 mutations also
occur in T-cell lymphomas (such as angioimmunoblastic T
lymphomas, 33%)10 and B-cell non-Hodgkin lymphomas (diffuse
large B-cell lymphoma, 12%; mantle cell lymphoma, 4%)11,12.
Mutations in TET2 are also prevalent in healthy individuals over
70 years of age (45%) and are often associated with clonal
haematopoiesis13. These results indicate that TET2 mutations are
ancestral events that drive nonmalignant clonal outgrowth and
facilitate haematological malignancy transformation. Indeed, Tet2
loss in mice leads to increased haematopoietic stem cell (HSC)
self-renewal and subsequent development of myeloid
malignancies14–17. Loss-of-function TET2 mutations and
TET2 loss result in aberrant 5mC and 5hmC profiles14,18, and
we recently showed that TET2 likely requires its catalytic activity
in HSC/haematopoietic progenitor cells (HPCs) to exert a
tumour-suppressive function19. However, the mechanisms by
which TET2 loss leads to diverse haematological malignancies
remain largely unknown.

Accumulations of mutations in HSCs/HPCs can be deleterious
to haematopoietic function and promote haematological malig-
nancy. Here we find, using our Tet2� /� mouse models and
combined biological, bioinformatics and genetic approaches, that
TET2 safeguards HSCs/HPCs against genomic mutagenicity.
Exome sequencing of Tet2� /� tumours and targeted single-cell
exome sequencing of premalignant wild-type (WT) and Tet2� /�

HSCs/HPCs show that TET2 loss leads to genomic hypermut-
ability in HSCs/HPCs. We further see that Tet2 loss leads to a
significantly higher mutational frequency at genomic sites that
gained 5hmC on Tet2 loss, where TET2 normally binds. Our
results indicate that TET2 and TET2-mediated 5 mC oxidation
safeguard cells against genomic mutagenicity. These findings
suggest a novel mechanism contributing to TET2 loss-mediated
pathogenesis in a diverse array of haematological malignancies.

Results
Tet2� /� mice develop myeloid and lymphoid malignancies.
To determine the complete spectrum of haematological malig-
nancies caused by Tet2 loss in vivo, we conducted a 2-year follow-
up study on a cohort of 198 Tet2� /� and 67 WT mice. All
Tet2� /� mice developed spontaneous lethal haematological
malignancies with survival durations ranging from 3 to 22
months, whereas no abnormalities were detected in the
haematopoietic organs of WT mice (Fig. 1a,b). Consistent with

previous observations14–16, 92% of these Tet2� /� mice
developed myeloid malignancies, as indicated by monocytosis/
neutrophilia, hepatosplenomegaly and marked expansion of well-
differentiated myeloid cells or erythroid precursors in the bone
marrow (BM), spleen and liver (Supplementary Fig. 1). Analyses
of these 198 Tet2� /� mice also showed that 3.5% of Tet2� /�

mice developed T-cell malignancies and 4.5% of Tet2� /� mice
developed B-cell malignancies (Fig. 1b–h, Supplementary Fig. 2
and Supplementary Tables 1 and 2). These mice displayed
marked lymphocytosis consisting of atypical lymphocytes,
lymphadenopathy, hepatosplenomegaly and enlarged thymuses,
in most cases with T-cell malignancies (Fig. 1c,d).

Flow cytometric analyses of the spleen and BM cells from seven
Tet2� /� mice with T-cell malignancies revealed dominant
proportions of CD3þ T lymphocytes with a high forward scatter;
five of these seven animals aberrantly expressed CD4 in their
T lymphocytes that were mostly positive for CD44 and PD1
(Fig. 1e, Supplementary Fig. 2a,b and Supplementary Table 1).
BM, spleen, liver and thymus had atypical lymphoid infiltrates
effacing or distorting the normal architecture of these organs
(Fig. 1f and Supplementary Fig. 2c). Atypical lymphocytes were
medium sized, with a smaller amount of cytoplasm and irregular
nuclei relative to WT. The spleen showed diffuse lymphoid
infiltrates involving both red and white pulp. The liver
demonstrated sinusoidal and perivascular infiltration. In addition,
splenic CD3þ cells from each of the tested Tet2� /� mice with
monomorphic T-cell infiltrations showed clonal T-cell receptor
rearrangement patterns (Supplementary Fig. 2f).

In nine Tet2� /� mice with B-cell malignancies, spleen and
BM cells were dominantly B220þ /loIgMþ /loCD19þCD43þ

TdT� B lymphocytes with a high forward scatter (Fig. 1g,
Supplementary Fig. 2d and Supplementary Table 2). B lympho-
cytes from four of these mice expressed CD5 (Supplementary
Table 2). Neoplastic monomorphic expansions of B cells were
thus observed in these Tet2� /� mice. Atypical lymphoid
infiltrates were identified in BM, spleen, liver, lymph node and
small intestine (Fig. 1h and Supplementary Fig. 2e). Atypical
lymphocytes were predominantly medium sized, with a smaller
amount of cytoplasm relative to WT, and with irregular
nuclear vesicular and condensed nuclear chromatin. The spleen
showed effacement of normal architecture with nodular lymphoid
infiltrate involving predominantly white pulp. The liver displayed
perivascular and sinusoidal infiltration. The intestine showed
lymphoepithelial lesions with lymphoid nodules. In addition,
splenic B220þ cells from each of the tested Tet2� /� mice with
monomorphic B-cell infiltrations were clonal for IgH D–J
rearrangement (Supplementary Fig. 2g).

Lymphoid malignancies in Tet2� /� mice are transplantable.
To evaluate the malignant nature of the abnormally infiltrated T
and B lymphocytes in Tet2� /� mice, spleen cells from one WT
mouse and two Tet2� /� mice with malignancies, one with a
T-cell clone (G3-6) and one with a B-cell clone (G3-185), were
transplanted into sublethally irradiated WT recipients (Fig. 2a).
No recipient receiving WT spleen cells developed any evidence of
disease within 6 months of transplantation (Fig. 2b). In contrast,
all mice receiving spleen cells from Tet2� /� mice with T- or
B-cell malignancy developed diseases with characteristics similar
to those observed in primary mouse, for example, elevated WBC
counts, lymphocytosis, splenomegaly, enlarged lymph nodes and
premature death (Fig. 2b). Flow cytometric analysis of peripheral
blood (PB) cells of the recipients revealed infiltration of uniform,
donor cell-derived, T- (CD45.2þCD4þCD8þ ) or B-
(CD45.2þB220þ IgMlow) cell populations, similar to what we
saw in the respective primary Tet2� /� mouse (Fig. 2c,d). As
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Figure 1 | Tet2� /� mice develop lethal lymphoid malignancies involving both T- and B-cell lineages. (a) Survival of WT (n¼ 67) and Tet2� /�

(n¼ 198) mice over time. (b) Proportions of haematological malignancy types developed in 198 Tet2� /� mice. (c) Gross morphologies of lymph nodes,

spleen, liver and/or thymus from representative Tet2� /� mice with T-cell (upper) or B-cell (lower) malignancy and age-matched WT mice.

(d) May–Grünwald–Giemsa-stained PB smears prepared from a representative WT mouse and Tet2� /� mice with T- and B-cell malignancies (scale bar,

20mm). (e) Flow cytometric analysis of the T-cell lineage (CD4/CD8) in BM, spleen and thymus of representative Tet2� /� mice with T-cell malignancy

and an age-matched WT mouse. (f) Histological analysis of H&E-stained sections of femur, spleen and liver from a representative Tet2� /� mouse with

T-cell malignancy and an age-matched WT mouse (scale bar, � 25, 200 mm; � 50, 100mm; �400, 12.5 mm). (g) Flow cytometric analysis of the B-cell

lineage (B220/IgM) in BM and spleen of representative Tet2� /� mice with B-cell malignancy and an age-matched WT mouse. (h) Histological analysis of

H&E-stained sections of femur, spleen and liver from a representative Tet2� /� mouse with B-cell malignancy and an age-matched WT mouse (scale bar,

� 25, 200mm; � 50, 100 mm; �400, 12.5mm).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15102 ARTICLE

NATURE COMMUNICATIONS | 8:15102 | DOI: 10.1038/ncomms15102 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


Tet2� /� B- and T-cell malignancies were transplantable into
sublethally irradiated WT mice, infiltrating T or B lymphocytes in
these Tet2� /� mice are indeed malignant/neoplastic. Collec-
tively, these data demonstrate that, in addition to myeloid
malignancies, Tet2� /� mice develop lethal T- and B-cell
malignancies with features most closely resembling human
peripheral T-cell lymphoma not otherwise specified and acute
B-lymphocytic leukaemia, respectively. These findings are
consistent with clinical observations that loss-of-function muta-
tions in TET2 are frequent in both myeloid and subtypes of
B- and T-cell malignancies6–11,16.

Tet2 loss leads to hypermutagenicity in HSCs/HPCs. The
kinetics and the involvement of multiple lineages by haematolo-
gical malignancies in Tet2� /� mice suggest that additional
genetic lesions may be acquired in these mice, resulting in the
pathogenesis and/or progression of various haematological
malignancies. To explore this possibility, comparative genomic
hybridization arrays and whole-exome sequencing (WES) were
performed using tumour and non-tumour cells from Tet2� /�

mice with myeloid, T- or B-cell malignancies. Comparative
genomic hybridization arrays identified a variety of structural
chromosomal abnormalities in myeloid, T- and B-cell malig-
nancies (Supplementary Fig. 3a and Supplementary Data 1).
Further examination of these chromosomal deletions/gains
revealed no specific regions associated with genes previously
linked to tumourigenesis. WES revealed on average 10,156 non-
synonymous replacement sites and 15,809 silent sites per tumour
type (Supplementary Fig. 3b and Supplementary Data 2). Of the

Tet2� /� tumours of myeloid, T- or B-cell origin, we found 190
genes with recurrent single-nucleotide variants (SNVs) originat-
ing from different tumours. The gene list included Apc, Nf1, Flt3,
Cbl, Notch1 and Mll2 (Fig. 3a and Supplementary Data 3), genes
recurrently altered in human haematological malignancies20–24.
The heterodimerization and proline-glutamic acid-serine-
threonine-rich domains of NOTCH1 are mutational hotspots in
human T-ALL24. Notch1 mutations identified by exome
sequencing and Sanger sequencing in Tet2� /� T-cell tumours
were found within these hotspots (Fig. 3b), suggesting
that additional Notch1 mutations are acquired in Tet2� /�

mice and contribute to the initiation/progression of the T-cell
malignancy.

To confirm that mutations associated with the tumours in aged
Tet2� /� mice were somatic, we performed additional WES
using Lin� c-Kitþ (LK) cells isolated from premalignant
(6-week-old) WT, Tet2þ /� and Tet2� /� mice. WES analyses
identified few mutations in premalignant LK cells from WT,
Tet2þ /� and Tet2� /� mice, because genetic changes would
only be detectable in a dominant LK cell clone (Supplementary
Data 4), so variants identified in Tet2� /� tumours are somatic
mutations accumulating in Tet2� /� cells over time, rather than
germline. To overcome this limitation, we performed targeted
sequencing on selected loci (from the Tet2� /� tumour SNVs) at
the single-cell level using WT and premalignant Tet2� /� LK
cells. Interestingly, we observed a significantly higher frequency of
mutations on seven of the 13 selected loci in Tet2� /� LK cells
compared to WT LK cells (Fig. 3c and Supplementary Table 3),
suggesting that Tet2� /� LK cells are hypermutagenic.
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Figure 2 | T- and B-cell malignancies in Tet2� /� mice are transplantable to sublethally irradiated secondary WT recipients. (a) Tumour transfer

schema. Spleen cells (1� 106) from representative Tet2� /� mice with a T- or B-cell malignancy or from an age-matched WT mouse were injected into
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analyses of PB T-cell lineage (CD4/CD8) donor cells (CD45.2þ ) from a mouse receiving spleen cells from a WT mouse or a Tet2� /� mouse with T-cell

malignancy. (d) Flow cytometric analyses of peripheral blood B-cell lineage (B220/IgM) donor cells (CD45.2þ ) from a mouse receiving spleen cells from a

WT mouse or a Tet2� /� mouse with B-cell malignancy.
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Higher mutational burden at sites with gained-5hmC peaks.
Given the role of TET proteins in the 5mC oxidation process, we
next examined the effect of Tet2 loss on genome-wide 5hmC and
5mC modification. We applied a selective chemical labelling and
affinity enrichment procedure25 to map genome-wide 5hmC
distributions in premalignant WT and Tet2� /� LK cells
(Supplementary Data 5). Consistent with previous observations
in mouse embryonic stem cells26, significant reductions of 5hmC
were restricted to bodies of genes intermediately or lowly
expressed in LK cells. 5hmC was not affected in highly
expressed genes in Tet2� /� LK cells (Fig. 4a and
Supplementary Fig. 4a). Most TET2-dependent 5hmC
modifications in LK cells were located within genes (Fig. 4b).

We then explored the overlap between sites with SNVs/indels in
Tet2� /� tumours and three different genomic loci: (1) sites with
no change in 5hmC/5mC peaks, presumably representing the
sites with 5mC oxidation catalysed by TET1/3, but not TET2;
(2) sites with 5hmC peak loss or 5mC peak gain, representing the
5mC sites that are converted to 5hmC by TET2; and (3) sites with
5hmC peak gain, likely representing the 5hmC sites that are
further oxidized to 5fC/5caC by TET2 (Fig. 4c). Using the w2 test,
consistent with TET2’s main role being further oxidation of
5hmC, we saw a significantly greater frequency of SNVs/indels in
Tet2� /� tumours at loci with 5hmC peak gains compared to loci
with no change in 5hmC/5mC peaks and loci with 5hmC peak
loss or 5mC peak gain (Fig. 4d,e and Supplementary Fig. 4b,c).
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Figure 3 | WES reveals mutations in TET2-deficient tumours. (a) Selected recurrent gene mutations in Tet2� /� tumours of myeloid, B- or T-cell lineage
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Similar increases were also observed with C-to-T (or G-to-A)
mutations (Supplementary Fig. 4b). This mutational occurrence
at loci with 5hmC peak gain was further confirmed by traditional
bisulfite sequencing and TET-assisted bisulfite sequencing at CpG
sites with different distances (o30 and 4100 bp) to selective
mutations (detected by WES) using WT and premalignant
Tet2� /� LK cells, which showed a significantly higher
percentage of CpG sites with a 5hmC gain in sites within 30 bp
from the mutation sites (7 out of 10) as compared to sites
4100 bp away (1 out of 10, Po0.05, by Fisher’s exact test) from
the mutation sites (Supplementary Fig. 4d,e). Together, loci with
5hmC peak gain on Tet2 loss are associated with a higher
mutational frequency.

We next used chromatin immunoprecipitation sequencing to
map genome-wide binding sites of TET2 in MEL (a mouse
erythroleukaemia cell line) cells overexpressing FLAG-tagged
TET2 (Supplementary Fig. 5a,b and Supplementary Data 6).
Genomic analysis revealed that TET2-binding sites are enriched
at regions that include exons, 50-untranslated region and CpG

islands (Supplementary Fig. 5c). We analysed the TET2-binding
sites with differentially methylated/hydroxymethylated regions in
Tet2� /� LK cells and observed significant overlap among genes
involved in myeloid and B-cell differentiation (Supplementary
Fig. 5d,e). In particular, TET2 is enriched more at loci with 5hmC
peak gain on Tet2 loss (Fig. 4f). Furthermore, the majority of
mutations we detected within loci that require TET2 for dynamic
DNA demethylation overlap with TET2-binding sites (Fig. 4g;
145 out of 212 mutation sites). Collectively, these results suggest
that TET2 binds to loci marked by a gain of 5hmC on TET2 loss,
and that at these sites, TET2 may protect genome stability.

TET2 loss is associated with increased mutational frequency.
We next examined whether TET2 loss affects the spontaneous
forward mutational frequency in the hypoxanthine-guanine
phosphoribosyltransferase 1 (HPRT1) gene in control and TET2kd
HeLa cells. The HPRT1 mutational frequency in TET2kd HeLa
cells increased about 24-fold compared to control HeLa cells
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Figure 4 | Greater mutational frequencies at loci with 5hmC peak gains in Tet2� /� tumours. (a) Distribution of average 5hmC enrichment at all genes
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(Fig. 5a and Supplementary Fig. 6a,b). Similar results were
obtained using control and Tet2kd NIH3T3 cells (Supplementary
Fig. 6c,d). When we stably re-expressed TET2 using a lentiviral
construct containing a mammalian codon-optimized cDNA
sequence of TET2 into TET2kd HeLa cells (Supplementary
Fig. 6e), HPRT1 mutational frequencies were completely rescued
(Fig. 5a). These results indicate that TET2 loss causes increases in
mutation rates. We then analysed the spectrum of mutations
identified in the HPRT1 gene in 6-thioguanine (6-TG)-resistant
clones of TET2kd HeLa cells. Interestingly, SNVs and single-
nucleotide insertions/deletions (indels) dominated the mutations
in the HPRT1 gene. Approximately 61% and 36% of the
mutations in TET2kd clones were transitions and transversions,
respectively, and B3% were indels (Supplementary Fig. 6f). We
further analysed the mutational spectrum of Tet2� /� tumours.
We focussed on mutations located at loci with 5hmC peak gains.
Base transition mutations clearly dominated the mutational
spectrum in Tet2� /� tumours, with G:C to A:T transitions
accounting for 35% of total mutations. The remaining mutations
consisted primarily of A:T to G:C transitions (23%), various
transversions (38%), with G:C to T:A being the most frequent,
and þ 1/� 1 indels (4%), with � 1 deletions being more com-
mon than þ 1 (Fig. 5b). Of all mutations isolated, 73% occurred
at CpG sites or clustered around CpG sites (±30 bp); since the
average distance between CpG sites across the genome is
100 bp27,28, o60% was expected in the gene bodies. The close
association of mutation sites with CpG sites suggests a preference
of mutational occurrence at or around CpG sites in Tet2� /�

tumours. The hypermutagenicity and mutational spectra of
TET2kd and Tet2� /� cells and the function of TET2/TDG in
5mC oxidation and demethylation suggest that TET2 is likely
involved in safeguarding genomic mutagenicity.

We further analysed a large cohort of MDS and MDS/MPN
patients (Supplementary Table 4) for the presence of somatic
mutations using exome sequencing of paired samples and
targeted deep sequencing of 60 genes (including TET2)
commonly mutated in these conditions (Supplementary Data 7).
Exome analysis revealed that patients with TET2 mutations
harbour a significantly higher number of mutational events
compared to those with WT TET2 (Fig. 5c). Similar results
were obtained in AML patient data when the The Cancer

Genome Atlas (TCGA) leukaemia cohort was analysed (Fig. 5d).
Of the 556 mutations identified in MDS and MDS/MPN patients
with TET2 mutations, 52% and 12% were transitions and indels,
respectively (Supplementary Fig. 6g), slightly higher than in patients
with WT TET2 (Supplementary Fig. 6h). Confirmatory deep
sequencing of a combined cohort showed that somatic TET2
mutations were associated with other subclonal events, chiefly in
APC, NF1, ASXL1, CBL and ZRSR2. Consistently, many of these
genes (for example, Apc, Nf1 and Cbl) are also affected by subclonal
mutations in Tet2� /� mice (Fig. 3a). Increases in numbers of
subclonal events in patients with TET2 mutations are consistent with
Tet2 loss leading to genome-wide hypermutability in HSCs/HPCs.

Discussion
In this study we show that, in addition to myeloid malignancies, a
fraction of Tet2� /� mice develop T- and B-cell malignancies.
These findings are consistent with clinical observations that
loss-of-function mutations in TET2 arise not only in human
myeloid malignancies but also in subtypes of B- and T-cell
malignancies6–11,16. Therefore, our Tet2� /� mice can serve as a
model for investigations of mechanisms by which Tet2
loss leads to diverse haematological malignancies.
Leukaemogenesis is a multistep process of acquiring gene
mutations. Loss-of-function TET2 mutations are initiating events
in the pathogenesis of haematological malignancies. The
occurrence of secondary oncogenic gene mutations, presumably
in an early haematopoietic progenitor, is likely capable of
modifying the disease phenotype and/or promoting the
transformation/progression of a specific haematological
malignancy in Tet2� /� mice. WES identified numerous SNVs/
indels in Tet2� /� tumours, indicating that TET2 loss constitutes a
state of genetic mutagenicity. Consistently, the number of
mutational events appears to be higher in MDS, MDS/MPN and
primary AML patients harbouring TET2 mutations compared to
those with WT TET2. However, this observation from patient
exome analysis does not necessarily imply a direct role of TET2
mutations in promoting additional mutations, since other factors
associated with patients with TET2 mutations might also
contribute to this observation such as older ages, increased stem
cell proliferation and/or longer average disease latency due to a
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preceding phase of clonal haematopoiesis. The increased
susceptibility to mutation acquisitions is likely further accelerated
in TET2-deficient HSCs/HPCs since Tet2 loss induced intrinsic
changes in these cells, with increased self-renewal and proliferation.
Our study identified mutations on the genes implicated in the
pathogenesis of the diverse disease phenotypes in Tet2� /� mice.
Mutations in Notch1, Flt3, Nf1, Ebf1, Apc, Cbl and other genes in
the Tet2� /� haematological malignancies are consistent with
human haematological malignancy gene alterations20–24. Recent
studies have shown that TET2 mutations also occur in healthy
elderly individuals with clonal haematopoiesis13. Therefore, as an
ancestral event in haematological malignancies and elderly
individuals, TET2 mutations represent a suitable target for
intervention at the early stages of clonal expansion of HSCs/HPCs.

Although we have shown that the catalytic activity of TET2 is
essential for its myeloid tumour-suppressive function in HSCs/
HPCs19, our recent RNA-seq and 5mC/5hmC analyses on
premalignant Tet2� /� and WT LK cells showed that distinct
cytosine modifications (particularly 5hmC) often mark specific
genes in Tet2� /� LK cells without altering their expression17.
The oxidation and demethylation of 5mC in the genome are
regulated in a sophisticated manner. 5fC and 5caC are substrates
for TDG1,29. TETs and TDG initiate active DNA demethylation
by oxidation of 5mC and excision of 5fC/5caC in DNA, followed
by incision and repair of the resulting abasic site (AP site).
Although the BER process is highly accurate, errors may occur
due to replication across 5mC derivatives and due to polymerase
errors during gap filling. Indeed, a recent in vitro biochemical
study showed that TET1 and TDG mediate sequential
demethylation of symmetrically methylated CpGs to avoid
DNA double-strand breaks, which could kill or transform the
cells30. 5mC is found to be a mutagen in tumour cells31. In
addition, a recent report finds that ‘G’-5caC base pairs mimic
mismatches during DNA replication32. Thus, genomic 5mC
derivatives should normally be processed error free by BER, with
mismatch repair likely serving as a ‘backup’ for certain 5mC
oxidation derivatives during DNA replication.

Mutations are generally considered to occur randomly
throughout the genome. Although we did not observe an overt
base preference in Tet2� /� tumours mutations, the mutations
did tend to be proximal to CpG sites. Our study also
demonstrated that a significantly higher frequency of mutations
occurred at loci with the gain of 5hmC in Tet2� /� tumours,
where TET2 normally binds. The mechanisms that govern the
association of Tet2 loss with increased local mutation rates
at/around gained-5hmC sites remain to be determined. A recent
study showed that Ung� /� mice exhibit higher spontaneous
mutation rates and increases in spontaneous B-cell lymphomas33.
Furthermore, Mbd4� /� mice were recently characterized as
having increased rates of C-to-T transitions at CpG sites34. In this
backdrop, our studies suggest that TET2 loss and TET2 loss-
mediated 5mC oxidation dysregulation are associated with
increased mutagenicity at specific genomic loci. Thus, TET2
protects HSC/HPC genomes against mutagenicity. There are now
genomic profiling methods for 5fC and 5caC35–37. Given that 5fC
and 5caC are directly excised by TDG/BER during active
demethylation, it will be interesting to see whether sites with
alterations in 5fC and 5caC marks in Tet2� /� LK cells are
preferentially associated with higher mutation rates. Parallel,
genome-wide, base-resolution maps of 5mC, 5hmC, 5fC and
5caC in Tet2� /� and WT LK cells are warranted for dissecting
TET2-mediated genome-wide DNA demethylation dynamics in
HSCs/HPCs and for uncovering correlations between specific
5mC, 5hmC, 5fC or 5caC alterations and the genomic
hypermutagenicity caused by Tet2 loss. Indeed, consistent
with our results, a recent report provides evidence that, more

than TET1 or 3, a forte of TET2 is the further oxidation of
5hmC38.

In summary, we show that TET2 loss leads to hypermutagenicity
in HSCs/HPCs, preferentially at loci with the gain of 5hmC on the
loss of TET2, where TET2 normally binds. TET2-dependent 5hmC
marks are highly enriched at gene bodies, such as exons of LK cells.
TET2-deficient HSCs/HPCs that become hypermutagenic are likely
not malignant per se, but higher mutation rates in these cells may
result in additional driver mutation(s) in TET2 target genes over
time. Such states may be amenable to TET2 activity-boosting
chemoprevention approaches. Our results unveil a novel role for
TET2 in safeguarding genome mutagenicity and provide additional
insights into the mechanisms by which loss-of-function TET2
mutations cause diverse human haematological malignancies.
Further mechanistic studies are needed to determine how TET2
loss leads to increased DNA mutagenicity in HSCs/HPCs and thus
the increased risks of haematopoietic malignancies.

Methods
Analyses of mice. Tet2-knockout (Tet2� /� ) mice were generated as described14.
Animal care was conducted in accordance with institutional guidelines and
approved by the Institutional Animal Care and Use Committee (IACUC),
University of Miami Miller School of Medicine. PB was collected by retro-orbital
bleeding of mice and was smeared for May–Grünwald–Giemsa staining, and/or
subjected to an automated blood count (Hemavet System 950FS). For
histopathology analyses, femurs were fixed in formaldehyde, decalcified and
paraffin embedded. Spleens, livers, lymph nodes, thymus and intestine were treated
similarly, except for the decalcification step. Sections (4.5 mm) were stained with
haematoxylin and eosin (H&E). For flow cytometric analyses, single-cell
suspensions from BM, spleen, liver, lymph node, thymus and PB were stained with
panels of fluorochrome-conjugated antibodies. Dead cells were excluded by
4,6-diamidino-2-phenylindole staining. Analyses were performed using a BD
FACSCanto II or LSRII flow cytometer. All data were analysed by FlowJo7.6
software.

Mouse exome sequencing. Initial WES was carried out to identify candidate
mutations in the exome of genes. Genomic DNA was captured with the
NimbleGen mouse exome array according to the manufacturer’s protocol, and
100-bp paired-end sequencing was performed using an Illumina HiSeq 2000. Raw
sequencing reads were mapped to the whole mouse genome (mm10) using
PEMapper/PECaller (https://github.com/wingolab-org/pecaller) with the default
settings39, and variant bases were annotated with SeqAnt (http://seqant.genetics.
emory.edu/)40. For samples subjected to mutation detection, genomic DNA was
amplified in selected exons by PCR (primers shown in Supplementary Data 8) and
sequenced by Sanger sequencing. The location and types of mutations were then
determined by sequencing results.

HPRT mutation analyses. Mutation analyses can be achieved in proliferating cells
in vitro by anHPRT1 assay that positively selects for HPRT-deficient mutants based
on their resistance to 6-TG, which is lethal to HPRT-WT cells that are proficient in
free purine base salvage41. The HPRT mutation assay was conducted as described
previously42. Briefly, cells (5� 105) were seeded in triplicate in 10-cm petri dishes
for 12 h and fed with complete medium containing 5 mM freshly prepared 6-TG.
Plating efficiency was determined by culturing 5� 102 cells in the absence of 6-TG.
After 10 days of culturing, colonies were visualized by staining with 0.05% crystal
violet. The mutation frequency was then the ratio of the number of clones in the
presence of 6-TG to the total number of cells plated, normalized by the plating
efficiency. Types of mutations were characterized by DNA sequencing coding
regions of the HPRT gene using primers shown in Supplementary Data 8.

Patients. The mutational statuses for TET2 and other coexisting genes were
analysed in BM and blood specimens from patients with various myeloid
neoplasms, including MDS, MDS/MPN and secondary AML (see Supplementary
Table 4 and Supplementary Data 5). Informed consent was obtained according to
protocols approved by the institutional review boards and in accordance with the
Declaration of Helsinki. Diagnosis was confirmed at each institution according
to the World Health Organization classification criteria. Analysis of TCGA
primary AML cases was performed using publically available data sets
(http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp).

WES for human patient samples. WES and targeted capture sequencing were
performed as described previously43. For WES, the 50 Mb of protein coding
sequences was enriched from total genomic DNA by liquid-phase hybridization
using SureSelect (version 4) (Agilent Technology), followed by massively parallel

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15102

8 NATURE COMMUNICATIONS | 8:15102 | DOI: 10.1038/ncomms15102 | www.nature.com/naturecommunications

https://github.com/wingolab-org/pecaller
http://seqant.genetics.emory.edu/
http://seqant.genetics.emory.edu/
http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
http://www.nature.com/naturecommunications


sequencing with HiSequation 2000 (Illumina). Somatic mutations were detected
using our in-house pipeline, followed by validation using amplicon deep
sequencing43,44. To minimize false positives and focus on the most prevalent or
relevant somatic events, we implemented a rational bioanalytic filtering approach
and applied heuristic bioanalytic pipelines. We used two independent pipelines to
identify somatic and germline alterations. For confirmation of somatic mutations,
we analysed paired germline DNA from CD3þ lymphocytes. The selected
observations were validated by targeted deep sequencing using MiSeq. Our
sequence library for deep sequencing was generated by TruSeqCustom Amplicon
(Illumina).

Targeted multiamplicon deep sequencing of patient samples. We applied
multiamplicon-targeted deep sequencing (TrueSeq; Illumina) to frequently affected
exons of 60 selected genes45. The sequencing libraries were generated according to
an Illumina paired-end library protocol and subjected to deep sequencing on
MiSeq (Illumina) instrumentation according to standard protocol. High-
probability oncogenic mutations were called by eliminating sequencing/mapping
errors and known/possible single-nucleotide polymorphisms based on available
databases and frequencies of variant reads. Genomic copy number status
was calculated by directly enumerating corresponding sequencing reads in
each exon.

Statistical analysis. Differences between experimental groups were determined by
the Student’s t-test, Fisher’s exact test, Wilcoxon’s rank-sum test and/or analysis of
variance, followed by Newman–Keuls multiple comparison tests as appropriate.
P values o0.05 were considered significant. For SNV count data, w2 tests were used
as implemented in R (http://cran.r-project.org/)46.

Data availability. Genome-wide data sets generated for this study are deposited at
GEO under the accession number GSE74390. All other remaining data are avail-
able within the article and Supplementary Files, or available from the authors on
request.
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