11 research outputs found

    The instrument suite of the European Spallation Source

    Get PDF
    An overview is provided of the 15 neutron beam instruments making up the initial instrument suite of the European Spallation Source (ESS), and being made available to the neutron user community. The ESS neutron source consists of a high-power accelerator and target station, providing a unique long-pulse time structure of slow neutrons. The design considerations behind the time structure, moderator geometry and instrument layout are presented. The 15-instrument suite consists of two small-angle instruments, two reflectometers, an imaging beamline, two single-crystal diffractometers; one for macromolecular crystallography and one for magnetism, two powder diffractometers, and an engineering diffractometer, as well as an array of five inelastic instruments comprising two chopper spectrometers, an inverse-geometry single-crystal excitations spectrometer, an instrument for vibrational spectroscopy and a high-resolution backscattering spectrometer. The conceptual design, performance and scientific drivers of each of these instruments are described. All of the instruments are designed to provide breakthrough new scientific capability, not currently available at existing facilities, building on the inherent strengths of the ESS long-pulse neutron source of high flux, flexible resolution and large bandwidth. Each of them is predicted to provide world-leading performance at an accelerator power of 2 MW. This technical capability translates into a very broad range of scientific capabilities. The composition of the instrument suite has been chosen to maximise the breadth and depth of the scientific impact o

    CFD modeling of passive autocatalytic recombiners

    No full text
    This study deals with numerical modeling of passive autocatalytic hydrogen recombiners (PARs). Such devices are installed within containments of many nuclear reactors in order to remove hydrogen and convert it to steam. The main purpose of this work is to develop a numerical model of passive autocatalytic recombiner (PAR) using the commercial computational fluid dynamics (CFD) software ANSYS-FLUENT and tuning the model using experimental results. The REKO 3 experiment was used for this purpose. Experiment was made in the Institute for Safety Research and Reactor Technology in Julich (Germany). It has been performed for different hydrogen concentrations, different flow rates, the presence of steam, and different initial temperatures of the inlet mixture. The model of this experimental recombiner was elaborated within the framework of this work. The influence of mesh, gas thermal conductivity coefficient, mass diffusivity coefficients, and turbulence model was investigated. The best results with a good agreement with REKO 3 data were received for k-ε model of turbulence, gas thermal conductivity dependent on the temperature and mass diffusivity coefficients taken from CHEMKIN program. The validated model of the PAR was next implemented into simple two-dimensional simulations of hydrogen behavior within a subcompartment of a containment building

    The concept of energy production on the basis of modern alternative fuels

    No full text
    The paper presents a concept of producing energy on the basis of modern alternative fuels to be burnt in low- and medium-power stokerfired boilers. The thermal energy contained in water vapour and hot water will be utilized in producing, in combination, of electrical energy, and for heating of cubature objects. Modern alternative fuels in the form of briquettes and pellets will be produced from hard coals and municipal waste other than hazardous. There have been presented the properties of alternative fuels obtained, and the concept of their utilization in the process of energy production in cogeneration

    A model of hydrogen passive autocatalytic recombiner and its validation via CFD simulations

    No full text
    Passive autocatalytic recombiners (PAR) is the only used method for hydrogen removal from the containment buildings in modern nuclear reactors. Numerical models of such devices, based on the CFD approach, are the subject of this paper. The models may be coupled with two types of computer codes: the lumped parameter codes, and the computational fluid dynamics codes. This work deals with 2D numerical model of PAR and its validation. Gaseous hydrogen may be generated in water nuclear reactor systems in a course of a severe accident with core overheating. Therefore, a risk of its uncontrolled combustion appears which may be destructive to the containment structure
    corecore