137 research outputs found

    Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1

    Get PDF
    Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the nicotinamide adenine dinucleotide (NAD)-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet know is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation

    NMN Deamidase Delays Wallerian Degeneration and Rescues Axonal Defects Caused by NMNAT2 Deficiency In Vivo

    Get PDF
    Axons require the axonal NAD-synthesizing enzyme NMNAT2 to survive. Injury or genetically induced depletion of NMNAT2 triggers axonal degeneration or defective axon growth. We have previously proposed that axonal NMNAT2 primarily promotes axon survival by maintaining low levels of its substrate NMN rather than generating NAD; however, this is still debated. NMN deamidase, a bacterial enzyme, shares NMN-consuming activity with NMNAT2, but not NAD-synthesizing activity, and it delays axon degeneration in primary neuronal cultures. Here we show that NMN deamidase can also delay axon degeneration in zebrafish larvae and in transgenic mice. Like overexpressed NMNATs, NMN deamidase reduces NMN accumulation in injured mouse sciatic nerves and preserves some axons for up to three weeks, even when expressed at a low level. Remarkably, NMN deamidase also rescues axonal outgrowth and perinatal lethality in a dose-dependent manner in mice lacking NMNAT2. These data further support a pro-degenerative effect of accumulating NMN in axons in vivo. The NMN deamidase mouse will be an important tool to further probe the mechanisms underlying Wallerian degeneration and its prevention.We thank Tim Self, Denise McLean, Ian Ward, and CSI/SLIM for use of imaging facilities and help with tissue processing. This work was funded by a Faculty of Medicine and Health Sciences, University of Nottingham nonclinical senior fellowship (to L.C.); a Marie Curie Intra European Fellowship (project number 301897) within the European Community 7th Framework Programme (to M.D.S. and L.C.); and an Institute Strategic Programme Grant from the Biotechnology and Biological Sciences Research Council (BBSRC) and Medical Research Council (MRC) grant MR/N004582/1 (to J.G. and M.P.C.)

    Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phytophthora infestans </it>is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The <it>P. infestans </it>genome experienced a repeat-driven expansion relative to the genomes of <it>Phytophthora sojae </it>and <it>Phytophthora ramorum </it>and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN) families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation.</p> <p>Results</p> <p>We used <it>in silico </it>approaches to predict and describe the repertoire of <it>P. infestans </it>secreted proteins (the secretome). We defined the "plastic secretome" as a subset of the genome that (i) encodes predicted secreted proteins, (ii) is excluded from genome segments orthologous to the <it>P. sojae </it>and <it>P. ramorum </it>genomes and (iii) is encoded by genes residing in gene sparse regions of <it>P. infestans </it>genome. Although including only ~3% <it>of P. infestans </it>genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced <it>in planta</it>. We highlight 19 plastic secretome genes induced <it>in planta </it>but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors.</p> <p>Conclusions</p> <p>This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.</p

    A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration.

    Get PDF
    NAD metabolism regulates diverse biological processes, including ageing, circadian rhythm and axon survival. Axons depend on the activity of the central enzyme in NAD biosynthesis, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2), for their maintenance and degenerate rapidly when this activity is lost. However, whether axon survival is regulated by the supply of NAD or by another action of this enzyme remains unclear. Here we show that the nucleotide precursor of NAD, nicotinamide mononucleotide (NMN), accumulates after nerve injury and promotes axon degeneration. Inhibitors of NMN-synthesising enzyme NAMPT confer robust morphological and functional protection of injured axons and synapses despite lowering NAD. Exogenous NMN abolishes this protection, suggesting that NMN accumulation within axons after NMNAT2 degradation could promote degeneration. Ectopic expression of NMN deamidase, a bacterial NMN-scavenging enzyme, prolongs survival of injured axons, providing genetic evidence to support such a mechanism. NMN rises prior to degeneration and both the NAMPT inhibitor FK866 and the axon protective protein Wld(S) prevent this rise. These data indicate that the mechanism by which NMNAT and the related Wld(S) protein promote axon survival is by limiting NMN accumulation. They indicate a novel physiological function for NMN in mammals and reveal an unexpected link between new strategies for cancer chemotherapy and the treatment of axonopathies

    The Enzymology of Cytosolic Pyrimidine 5'-Nucleotidases: Functional Analysis and Physiopathological Implications.

    No full text
    In mammals, cellular 5'-nucleotidase (5'-NT) activity (EC 3.1.3.5) encompasses a number of genetically and structurally distinct enzyme forms, either membrane-bound or soluble, mainly cytosolic, that are characterized by broad specificity towards nucleoside 5'-monophosphate substrates differing in base (purine/pyrimidine) and/or sugar (oxy/deoxy-ribose) moieties. In particular, among the cytosolic 5'-NTs active towards pyrimidine nucleotides are cN-III and cdN, ubiquitously distributed in mammalian tissues and treated as a single entity in the early days. cN-III was first linked to a genetic defect, hereditary pyrimidine nucleotidase deficiency, associated to a nonspherocytic hemolytic anemia disorder of still unclear mechanism but metabolically characterized by abnormally high levels of pyrimidine compounds and ribonucleoproteins in erythrocytes, as evidenced by occurrence of basophilic stippling on blood smearings. Since the first review on pyrimidine-specific nucleotidases (Amici, A.; Magni, G., Arch. Biochem. Biophys., 2002, 397(2), 184-190), excellent overviews on the topic appeared in the literature. In the present contribution, the major findings on these two enzymatic proteins, cN-III and cdN, will be described with particular emphasis on the relationships between their structure and function, as well as on their roles in normal and pathological conditions. The catalytic mechanism of both specific hydrolytic and phosphotransferase activities, possessed by both enzymes, will be discussed also in the light of recent solution of both cN-III and cdN three-dimensional structures. This review also focuses on possible therapeutic approaches involving cellular 5'-NTs in detoxifying common antiviral and antineoplastic drugs

    NAD(P)+-glycohydrolase from human spleen: a multicatalytic enzyme

    No full text
    none3noNAD(P)(+)-glycohydrolase (NADase, EC 3.2.2.6) was partially purified from microsomal membranes of human spleen after solubilization with Triton X-100. In addition to NAD(+) and NADP(+), the enzyme catalyzed the hydrolysis of several NAD(+) analogues and the pyridine base exchange reaction with conversion of NAD(+) into 3-acetylpyridine adenine dinucleotide. The enzyme also catalyzed the synthesis of cyclic ADP-ribose (cADPR) from NAD(+) and the hydrolysis of cADPR to adenosine diphosphoribose (ADPR). Therefore, this enzyme is a new member of multicatalytic NADases recently identified from mammals, involved in the regulation of intracellular cADPR concentration. Human spleen NADase showed a subunit molecular mass of 45 kDa, a pI of 4.9 and a K-m value for NAD(+) of 26 mu M. High activation of ADPR cyclase activity was observed in the presence of Ag+ ions, corresponding to NADase inhibition.restrictedOrsomando G; Polzonetti V; Natalini POrsomando, Giuseppe; Polzonetti, V; Natalini, P

    Rapporti tra tipi vegetazionali e substrato roccioso nell’area umbro-marchigiana.

    No full text
    In this area, Ostrya carpinifolia woods with Quercus cerris are related to the diffusion of "calcari diasprini". Quercus pubescens woods almost exclusively pertain to ares covered by nappe detritus and calcareous-marly detritus; woody communities of Quercus cerris are explained by the presence of fersiallitic paleosols

    NAD(P)+-glycohydrolase from human spleen: a multicatalytic enzyme

    No full text
    NAD(P)(+)-glycohydrolase (NADase, EC 3.2.2.6) was partially purified from microsomal membranes of human spleen after solubilization with Triton X-100. In addition to NAD(+) and NADP(+), the enzyme catalyzed the hydrolysis of several NAD(+) analogues and the pyridine base exchange reaction with conversion of NAD(+) into 3-acetylpyridine adenine dinucleotide. The enzyme also catalyzed the synthesis of cyclic ADP-ribose (cADPR) from NAD(+) and the hydrolysis of cADPR to adenosine diphosphoribose (ADPR). Therefore, this enzyme is a new member of multicatalytic NADases recently identified from mammals, involved in the regulation of intracellular cADPR concentration. Human spleen NADase showed a subunit molecular mass of 45 kDa, a pI of 4.9 and a K-m value for NAD(+) of 26 mu M. High activation of ADPR cyclase activity was observed in the presence of Ag+ ions, corresponding to NADase inhibition
    corecore