82 research outputs found

    Some universal limits for nonhomogeneous birth and death processes

    Get PDF
    In this paper we consider nonhomogeneous birth and death processes (BDP) with periodic rates. Two important parameters are studied, which are helpful to describe a nonhomogeneous BDP X = X(t), t≥ 0: the limiting mean value (namely, the mean length of the queue at a given time t) and the double mean (i.e. the mean length of the queue for the whole duration of the BDP). We find conditions of existence of the means and determine bounds for their values, involving also the truncated BDP XN. Finally we present some examples where these bounds are used in order to approximate the double mean

    Invasive Crayfish moving Northwards: management challenges and policy implications at the local scale

    Get PDF
    Freshwater ecosystems in Italy, as most European countries, have been severely impacted by the invasion of alien crayfish. The two most widespread species in Trentino (NE Italy) are Procambarus clarkii and Faxionus limosus; for both species, the high elevation and cold climate of most of the Trentino territory represent a climatic barrier to their northwards spread. Procambarus clarkii is present in one small lake at 950 m asl, and Faxionus limosus in a group of 5 lakes at 450 m asl, over an area of about 80km2. the introduction of both species is associated with fish restocking, and lead to the extinction of existing populations of the native stone crayfish Austropotamobius pallipes. The Management Plan of Austropotamobius pallipes in Trentino listed the eradication/containment of these IAS populations among the conservation priorities for the native populations. The eradication campaigns of P. clarkii started in 2018 with a release/recapture campaign aimed at assessing the abundance of the populations, and continued in 2020, 2021, 2022. As a result, the capture efficiency decreased, suggesting a population reduction trend. The containment of Faxionus limosus is more difficult, given its presence in a higher number of lakes, three of which are hydrologically connected. A first containment campaign to prevent its spread in the river network is planned for summer 2023. The financial support to these activities has been granted by the local Nature 2000 networks and by the local administrations, which have also promoted the communication with citizens and stakeholders to raise consensus and collaboratio

    On random flights with non-uniformly distributed directions

    Full text link
    This paper deals with a new class of random flights X‾d(t),t>0,\underline{\bf X}_d(t),t>0, defined in the real space Rd,d≥2,\mathbb{R}^d, d\geq 2, characterized by non-uniform probability distributions on the multidimensional sphere. These random motions differ from similar models appeared in literature which take directions according to the uniform law. The family of angular probability distributions introduced in this paper depends on a parameter ν≥0\nu\geq 0 which gives the level of drift of the motion. Furthermore, we assume that the number of changes of direction performed by the random flight is fixed. The time lengths between two consecutive changes of orientation have joint probability distribution given by a Dirichlet density function. The analysis of X‾d(t),t>0,\underline{\bf X}_d(t),t>0, is not an easy task, because it involves the calculation of integrals which are not always solvable. Therefore, we analyze the random flight X‾md(t),t>0,\underline{\bf X}_m^d(t),t>0, obtained as projection onto the lower spaces Rm,m<d,\mathbb{R}^m,m<d, of the original random motion in Rd\mathbb{R}^d. Then we get the probability distribution of X‾md(t),t>0.\underline{\bf X}_m^d(t),t>0. Although, in its general framework, the analysis of X‾d(t),t>0,\underline{\bf X}_d(t),t>0, is very complicated, for some values of ν\nu, we can provide some results on the process. Indeed, for ν=1\nu=1, we obtain the characteristic function of the random flight moving in Rd\mathbb{R}^d. Furthermore, by inverting the characteristic function, we are able to give the analytic form (up to some constants) of the probability distribution of X‾d(t),t>0.\underline{\bf X}_d(t),t>0.Comment: 28 pages, 3 figure

    Convolution-type derivatives, hitting-times of subordinators and time-changed C0C_0-semigroups

    Full text link
    In this paper we will take under consideration subordinators and their inverse processes (hitting-times). We will present in general the governing equations of such processes by means of convolution-type integro-differential operators similar to the fractional derivatives. Furthermore we will discuss the concept of time-changed C0C_0-semigroup in case the time-change is performed by means of the hitting-time of a subordinator. We will show that such time-change give rise to bounded linear operators not preserving the semigroup property and we will present their governing equations by using again integro-differential operators. Such operators are non-local and therefore we will investigate the presence of long-range dependence.Comment: Final version, Potential analysis, 201

    Reaction-diffusion systems and nonlinear waves

    Full text link
    The authors investigate the solution of a nonlinear reaction-diffusion equation connected with nonlinear waves. The equation discussed is more general than the one discussed recently by Manne, Hurd, and Kenkre (2000). The results are presented in a compact and elegant form in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation. The importance of the derived results lies in the fact that numerous results on fractional reaction, fractional diffusion, anomalous diffusion problems, and fractional telegraph equations scattered in the literature can be derived, as special cases, of the results investigated in this article.Comment: LaTeX, 16 pages, corrected typo

    A Pearson-Dirichlet random walk

    Full text link
    A constrained diffusive random walk of n steps and a random flight in Rd, which can be expressed in the same terms, were investigated independently in recent papers. The n steps of the walk are identically and independently distributed random vectors of exponential length and uniform orientation. Conditioned on the sum of their lengths being equal to a given value l, closed-form expressions for the distribution of the endpoint of the walk were obtained altogether for any n for d=1, 2, 4 . Uniform distributions of the endpoint inside a ball of radius l were evidenced for a walk of three steps in 2D and of two steps in 4D. The previous walk is generalized by considering step lengths which are distributed over the unit (n-1) simplex according to a Dirichlet distribution whose parameters are all equal to q, a given positive value. The walk and the flight above correspond to q=1. For any d >= 3, there exist, for integer and half-integer values of q, two families of Pearson-Dirichlet walks which share a common property. For any n, the d components of the endpoint are jointly distributed as are the d components of a vector uniformly distributed over the surface of a hypersphere of radius l in a space Rk whose dimension k is an affine function of n for a given d. Five additional walks, with a uniform distribution of the endpoint in the inside of a ball, are found from known finite integrals of products of powers and Bessel functions of the first kind. They include four different walks in R3 and two walks in R4. Pearson-Liouville random walks, obtained by distributing the total lengths of the previous Pearson-Dirichlet walks, are finally discussed.Comment: 33 pages 1 figure, the paper includes the content of a recently submitted work together with additional results and an extended section on Pearson-Liouville random walk
    • …
    corecore