239 research outputs found

    Clinical validation of a spectroscopic liquid biopsy for earlier detection of brain cancer

    Get PDF
    BackgroundDiagnostic delays impact the quality of life and survival of patients with brain tumors. Earlier and expeditious diagnoses in these patients are crucial to reduce the morbidities and mortalities associated with brain tumors. A simple, rapid blood test that can be administered easily in a primary care setting to efficiently identify symptomatic patients who are most likely to have a brain tumor would enable quicker referral to brain imaging for those who need it most.MethodsBlood serum samples from 603 patients were prospectively collected and analyzed. Patients either had non-specific symptoms that could be indicative of a brain tumor on presentation to the Emergency Department, or a new brain tumor diagnosis and referral to the neurosurgical unit, NHS Lothian, Scotland. Patient blood serum samples were analyzed using the Dxcover® Brain Cancer liquid biopsy. This technology utilizes infrared spectroscopy combined with a diagnostic algorithm to predict the presence of intracranial disease.ResultsOur liquid biopsy approach reported an area under the receiver operating characteristic curve of 0.8. The sensitivity-tuned model achieves a 96% sensitivity with 45% specificity (NPV 99.3%) and identified 100% of glioblastoma multiforme patients. When tuned for a higher specificity, the model yields a sensitivity of 47% with 90% specificity (PPV 28.4%).ConclusionsThis simple, non-invasive blood test facilitates the triage and radiographic diagnosis of brain tumor patients while providing reassurance to healthy patients. Minimizing time to diagnosis would facilitate the identification of brain tumor patients at an earlier stage, enabling more effective, less morbid surgical and adjuvant care

    Adults with corrected oesophageal atresia: is oesophageal function associated with complaints and/or quality of life?

    Get PDF
    The aim of this study was to evaluate oesophageal function after correction of oesophageal atresia in adults, and to investigate the association between complaints, oesophageal function and quality of life (QoL). Twenty-five adults were included who participated in previous follow-up studies, during which complaints of dysphagia and gastro-oesophageal reflux (GOR), results of upper gastrointestinal endoscopy, oesophageal biopsies and QoL had been collected. Manometry was performed in 20 patients, 24 h pH-measurements were performed in 21 patients. pH-values (sample time 5 s) were calculated using criteria of Johnson and DeMeester. Associations were tested with ANOVA and χ2-tests. Ten patients (48%) reported complaints of dysphagia, seven (33%) of GOR. The amplitude of oesophageal contractions was low (<15 mmHg) in four patients (20%). pH-measurements showed pathological reflux in three patients (14%). Patients reporting dysphagia more often had disturbed motility (P = 0.011), and lower scores on the domains “general health perceptions” (SF-36) (P = 0.026), “standardised physical component” (SF-36) (P = 0.013), and “physical well-being” (GIQLI) (0.047). No other associations were found. This study shows a high percentage of oesophageal motility disturbances and a moderate percentage of GOR after correction of oesophageal atresia. Patients reporting dysphagia, whom more often had disturbed motility, seemed to be affected by these symptoms in their QoL

    Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner

    Get PDF
    The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room

    Causes and Outcomes of the Acute Chest Syndrome in Sickle Cell Disease

    Get PDF
    Background The acute chest syndrome is the leading cause of death among patients with sickle cell disease. Since its cause is largely unknown, therapy is supportive. Pilot studies with improved diagnostic techniques suggest that infection and fat embolism are underdiagnosed in patients with the syndrome. Methods In a 30-center study, we analyzed 671 episodes of the acute chest syndrome in 538 patients with sickle cell disease to determine the cause, outcome, and response to therapy. We evaluated a treatment protocol that included matched transfusions, bronchodilators, and bronchoscopy. Samples of blood and respiratory tract secretions were sent to central laboratories for antibody testing, culture, DNA testing, and histopathological analyses. Results Nearly half the patients were initially admitted for another reason, mainly pain. When the acute chest syndrome was diagnosed, patients had hypoxia, decreasing hemoglobin values, and progressive multilobar pneumonia. The mean length of hospitalization was 10.5 days. Thirteen percent of patients required mechanical ventilation, and 3 percent died. Patients who were 20 or more years of age had a more severe course than those who were younger. Neurologic events occurred in 11 percent of patients, among whom 46 percent had respiratory failure. Treatment with phenotypically matched transfusions improved oxygenation, with a 1 percent rate of alloimmunization. One fifth of the patients who were treated with bronchodilators had clinical improvement. Eighty-one percent of patients who required mechanical ventilation recovered. A specific cause of the acute chest syndrome was identified in 38 percent of all episodes and 70 percent of episodes with complete data. Among the specific causes were pulmonary fat embolism and 27 different infectious pathogens. Eighteen patients died, and the most common causes of death were pulmonary emboli and infectious bronchopneumonia. Infection was a contributing factor in 56 percent of the deaths. Conclusions Among patients with sickle cell disease, the acute chest syndrome is commonly precipitated by fat embolism and infection, especially community-acquired pneumonia. Among older patients and those with neurologic symptoms, the syndrome often progresses to respiratory failure. Treatment with transfusions and bronchodilators improves oxygenation, and with aggressive treatment, most patients who have respiratory failure recover

    Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy

    Get PDF
    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a nondestructive, label-free optical method, to reveal glioma infiltration in animal models. We show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ = 0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density, and protein/lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density, and protein/lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery.Chemistry and Chemical Biolog

    Characterizing the cancer genome in lung adenocarcinoma

    Full text link
    Somatic alterations in cellular DNA underlie almost all human cancers(1). The prospect of targeted therapies(2) and the development of high-resolution, genome-wide approaches(3-8) are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours ( n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in similar to 12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 ( NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62944/1/nature06358.pd
    corecore