66 research outputs found

    The role of Fused in Sarcoma (FUS) in the alternative splicing of TAU

    Get PDF
    Neurodegenerative disease patients suffer from cognitive decline and/or motor dysfunctions, depending on the different regions affected by the neuron loss. With aging being the major risk factor and a society with increased life expectancy, there is an urgent need to develop new effective treatments to alleviate the situation faced by patients, their families and society. Although neurodegenerative diseases including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD) lead to different clinical symptoms, they share common pathomechanisms, such as protein aggregation and altered RNA metabolism. A subset of ALS and FTD cases, for instance, is pathologically characterized by neuronal cytoplasmic inclusions containing aggregated Fused in Sarcoma (FUS) protein. There is also a genetic link, since FUS mutations cause ALS with FUS pathology. FUS is a DNA/RNA-binding protein known to regulate different steps of RNA metabolism, however, its exact function and target genes in neurons were unknown. In this study, I evaluated the neuronal role of FUS in alternative splicing using a candidate approach focusing on the microtubule-associated protein TAU. TAU is one of the most widely studied proteins in neurodegeneration research due to its aggregation in different tauopathies, most notably AD. Mutations in the TAU gene MAPT, that affect alternative splicing of exon 10, are known to cause another subtype of FTD. Here, I demonstrate that FUS depleted rat neurons, although having normal viability, show aberrant alternative splicing of TAU, with increased inclusion of exon 3 and exon 10, resulting in higher expression of the 2N and 4R TAU isoforms. Importantly, reintroduction of human FUS rescues aberrant splicing of TAU in FUS depleted neurons. Accordingly, overexpression of FUS decreases expression of 2N and 4R TAU isoforms. In mouse brain lysates, I detected direct FUS binding to TAU pre-mRNA, with strong binding around the regulated exon 10, often at AUU-rich RNA stretches. Since TAU splicing is regulated differently in humans and rodents, I also confirmed the role of human FUS in TAU exon 10 splicing using a TAU minigene and a human neuronal cell line. In addition, I analyzed the morphology and development of axons to evaluate the functional consequences of FUS depletion in neurons. Although FUS depleted neurons develop neurites normally, their axons are significantly shorter than in the control cells. Similar to observations in TAU/MAP1B knockout neurons, axons of FUS depleted neurons develop significantly larger growth cones with abnormal cytoskeletal organization. The development of growth cones in vivo is an essential step in axonal maintenance and repair. Altogether, this study identified TAU as the first physiological splice target of FUS in neurons. The newly discovered role of FUS in regulating the axonal cytoskeleton indicates that aberrant axonal function could contribute to the neuron loss seen in ALS/FTD cases with FUS aggregates.Patienten mit neurodegenerativen Erkrankungen können an kognitivem Abbau und/oder motorische Störungen leiden, je nachdem welche Gehirnregion von dem Verlust von Neuronen betroffen ist. Da sich das Risiko einer neurodegenerativen Erkrankung mit zunehmendem Alter drastisch erhöht und wir eine Gesellschaft mit steigender Lebenserwartung haben, ist es dringend notwending, neue wirksame Behandlungsmethoden zu entwickeln, um die Situation, mit der sich Patienten, ihre Familien und die Gesellschaft konfrontiert sehen, zu erleichtern. Obwohl sich verschiedene neurodegenerative Erkrankungen wie die Alzheimer-Erkrankung (AD), Amyotrophe Lateralsklerose (ALS) oder Frontotemporale Demenz (FTD) klinisch unterscheiden, gibt es gemeinsame Pathomechanismen, wie Proteinaggregation und Störungen im RNA-Metabolismus. Bei einem Teil der ALS und FTD Patienten beobachtet man Ablagerungen aus aggregiertem Fused in Sarcoma (FUS) Protein. Des Weiteren verursachen FUS Mutationen ALS mit FUS neuronalen Aggregaten. FUS ist ein DNA/RNA-bindendes Protein, das verschiedene Schritte des RNA-Metabolismus reguliert. Die genaue Funktion von FUS und seine Zielgene in Neuronen waren jedoch bisher unbekannt. In dieser Studie habe ich die Funktion von FUS auf neuronales alternatives Spleißen mit einem Kandidaten-Ansatz untersucht, und mich insbesondere auf das Mikrotubuli-bindende Protein TAU fokussiert. Tau ist eines der bekanntesten Proteine in der Demenzforschung, da TAU Aggregate in verschiedenen sogenannten Tauopathien, insbesondere AD, gefunden wurden. Mutationen im TAU Gen MAPT, die das alternative Spleißen von TAU Exon 10 beeinflussen, können einen anderen Subtyp der FTD verursachen. Diese Studie zeigt, dass die Herunterregulierung (Gen-Knockdown) von FUS in murinen Neuronen das Überleben der Neuronen nicht beeinträchtigt, aber zu verändertem alternativen Spleißen von TAU mit einem erhöhten Einschluss von Exon 3 und Exon 10 führt und somit eine höhere Expression von den 2N und 4R TAU Isoformen verursacht. Eine wichtige Beobachtung dieser Studie war auch, dass die Expression von humanem FUS in FUS knockdown Neuronen aberrantes TAU Spleißen korrigieren kann. Dementsprechend führte auch die alleinige Überexpression von FUS zu einer verminderten Expression von 2N und 4R TAU. In Lysaten von Mausgehirnen konnte ich eine direkte Interaktion zwischen FUS und TAU RNA nachweisen, und zwar mit bevorzugter FUS Bindung nahe am regulierten TAU Exon 10 und oft an AUU-reichen RNA-Abschnitten. Da das Spleißen von TAU in Menschen und Nagetieren unterschiedlich reguliert wird, bestätigte ich mit sowohl einer menschlichen neuronalen Zelllinie als auch einem TAU-Minigen Konstrukt die Rolle von humanem FUS in TAU Exon 10 Spleißen. Um die funktionalen Konsequenzen von FUS knockdown in Neuronen zu bewerten, analysierte ich die Morphologie und Entwicklung der Axone. Obwohl Neuronen mit FUS knockdown normalen Neuriten bilden, sind ihre Axone deutlich kürzer als die der Kontroll-Neuronen. Wie auch schon in TAU/MAP1B knockout Neuronen beobachtet wurde, entwickeln FUS knockdown Neuronen Axone mit einem deutlich größeren Wachstumskegel und abnormer Zytoskelett-Organisation. Die dynamische Bildung axonaler Wachstumskegel ist ein wesentlicher Schritt in der axonalen Aufrechterhaltung und Reparatur in vivo. Insgesamt konnte diese Studie TAU als erstes physiologisches splice Zielgen von FUS in Neuronen identifizieren. Die neu entdeckte Funktion von FUS bei der Regulation des axonalen Zytoskelettes spricht für eine mögliche Rolle der veränderten axonalen Funktion beim Verlust von Neuronen in ALS/FTD Fällen mit FUS Aggregaten

    Exploring the Occupation of Education of Children with Undocumented Immigrant Parents

    Get PDF
    This research study highlights the detrimental effects of family separations on children\u27s well-being, academic performance, and long-term outcomes. It emphasizes the urgent need for research on the mental health effects of immigration policies on children at risk of parental deportation. A qualitative research study was used to understand the experiences and challenges of adults with undocumented immigrant parents during various stages of schooling. The research utilizes the Kawa model to explore emotional factors and barriers affecting students\u27 occupational engagement in an educational setting. The study aims to identify supports and barriers to school engagement for students with undocumented immigrant parents, using a qualitative descriptive approach with open-ended survey questions. Participants will be recruited through snowball sampling, and data will be collected through surveys and the drawing of the Kawa model. Data analysis will involve identifying themes using Braun and Clarke\u27s six-step thematic analysis.https://soar.usa.edu/otdcapstonesspring2024/1031/thumbnail.jp

    The role of Fused in Sarcoma (FUS) in the alternative splicing of TAU

    Get PDF
    Neurodegenerative disease patients suffer from cognitive decline and/or motor dysfunctions, depending on the different regions affected by the neuron loss. With aging being the major risk factor and a society with increased life expectancy, there is an urgent need to develop new effective treatments to alleviate the situation faced by patients, their families and society. Although neurodegenerative diseases including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD) lead to different clinical symptoms, they share common pathomechanisms, such as protein aggregation and altered RNA metabolism. A subset of ALS and FTD cases, for instance, is pathologically characterized by neuronal cytoplasmic inclusions containing aggregated Fused in Sarcoma (FUS) protein. There is also a genetic link, since FUS mutations cause ALS with FUS pathology. FUS is a DNA/RNA-binding protein known to regulate different steps of RNA metabolism, however, its exact function and target genes in neurons were unknown. In this study, I evaluated the neuronal role of FUS in alternative splicing using a candidate approach focusing on the microtubule-associated protein TAU. TAU is one of the most widely studied proteins in neurodegeneration research due to its aggregation in different tauopathies, most notably AD. Mutations in the TAU gene MAPT, that affect alternative splicing of exon 10, are known to cause another subtype of FTD. Here, I demonstrate that FUS depleted rat neurons, although having normal viability, show aberrant alternative splicing of TAU, with increased inclusion of exon 3 and exon 10, resulting in higher expression of the 2N and 4R TAU isoforms. Importantly, reintroduction of human FUS rescues aberrant splicing of TAU in FUS depleted neurons. Accordingly, overexpression of FUS decreases expression of 2N and 4R TAU isoforms. In mouse brain lysates, I detected direct FUS binding to TAU pre-mRNA, with strong binding around the regulated exon 10, often at AUU-rich RNA stretches. Since TAU splicing is regulated differently in humans and rodents, I also confirmed the role of human FUS in TAU exon 10 splicing using a TAU minigene and a human neuronal cell line. In addition, I analyzed the morphology and development of axons to evaluate the functional consequences of FUS depletion in neurons. Although FUS depleted neurons develop neurites normally, their axons are significantly shorter than in the control cells. Similar to observations in TAU/MAP1B knockout neurons, axons of FUS depleted neurons develop significantly larger growth cones with abnormal cytoskeletal organization. The development of growth cones in vivo is an essential step in axonal maintenance and repair. Altogether, this study identified TAU as the first physiological splice target of FUS in neurons. The newly discovered role of FUS in regulating the axonal cytoskeleton indicates that aberrant axonal function could contribute to the neuron loss seen in ALS/FTD cases with FUS aggregates.Patienten mit neurodegenerativen Erkrankungen können an kognitivem Abbau und/oder motorische Störungen leiden, je nachdem welche Gehirnregion von dem Verlust von Neuronen betroffen ist. Da sich das Risiko einer neurodegenerativen Erkrankung mit zunehmendem Alter drastisch erhöht und wir eine Gesellschaft mit steigender Lebenserwartung haben, ist es dringend notwending, neue wirksame Behandlungsmethoden zu entwickeln, um die Situation, mit der sich Patienten, ihre Familien und die Gesellschaft konfrontiert sehen, zu erleichtern. Obwohl sich verschiedene neurodegenerative Erkrankungen wie die Alzheimer-Erkrankung (AD), Amyotrophe Lateralsklerose (ALS) oder Frontotemporale Demenz (FTD) klinisch unterscheiden, gibt es gemeinsame Pathomechanismen, wie Proteinaggregation und Störungen im RNA-Metabolismus. Bei einem Teil der ALS und FTD Patienten beobachtet man Ablagerungen aus aggregiertem Fused in Sarcoma (FUS) Protein. Des Weiteren verursachen FUS Mutationen ALS mit FUS neuronalen Aggregaten. FUS ist ein DNA/RNA-bindendes Protein, das verschiedene Schritte des RNA-Metabolismus reguliert. Die genaue Funktion von FUS und seine Zielgene in Neuronen waren jedoch bisher unbekannt. In dieser Studie habe ich die Funktion von FUS auf neuronales alternatives Spleißen mit einem Kandidaten-Ansatz untersucht, und mich insbesondere auf das Mikrotubuli-bindende Protein TAU fokussiert. Tau ist eines der bekanntesten Proteine in der Demenzforschung, da TAU Aggregate in verschiedenen sogenannten Tauopathien, insbesondere AD, gefunden wurden. Mutationen im TAU Gen MAPT, die das alternative Spleißen von TAU Exon 10 beeinflussen, können einen anderen Subtyp der FTD verursachen. Diese Studie zeigt, dass die Herunterregulierung (Gen-Knockdown) von FUS in murinen Neuronen das Überleben der Neuronen nicht beeinträchtigt, aber zu verändertem alternativen Spleißen von TAU mit einem erhöhten Einschluss von Exon 3 und Exon 10 führt und somit eine höhere Expression von den 2N und 4R TAU Isoformen verursacht. Eine wichtige Beobachtung dieser Studie war auch, dass die Expression von humanem FUS in FUS knockdown Neuronen aberrantes TAU Spleißen korrigieren kann. Dementsprechend führte auch die alleinige Überexpression von FUS zu einer verminderten Expression von 2N und 4R TAU. In Lysaten von Mausgehirnen konnte ich eine direkte Interaktion zwischen FUS und TAU RNA nachweisen, und zwar mit bevorzugter FUS Bindung nahe am regulierten TAU Exon 10 und oft an AUU-reichen RNA-Abschnitten. Da das Spleißen von TAU in Menschen und Nagetieren unterschiedlich reguliert wird, bestätigte ich mit sowohl einer menschlichen neuronalen Zelllinie als auch einem TAU-Minigen Konstrukt die Rolle von humanem FUS in TAU Exon 10 Spleißen. Um die funktionalen Konsequenzen von FUS knockdown in Neuronen zu bewerten, analysierte ich die Morphologie und Entwicklung der Axone. Obwohl Neuronen mit FUS knockdown normalen Neuriten bilden, sind ihre Axone deutlich kürzer als die der Kontroll-Neuronen. Wie auch schon in TAU/MAP1B knockout Neuronen beobachtet wurde, entwickeln FUS knockdown Neuronen Axone mit einem deutlich größeren Wachstumskegel und abnormer Zytoskelett-Organisation. Die dynamische Bildung axonaler Wachstumskegel ist ein wesentlicher Schritt in der axonalen Aufrechterhaltung und Reparatur in vivo. Insgesamt konnte diese Studie TAU als erstes physiologisches splice Zielgen von FUS in Neuronen identifizieren. Die neu entdeckte Funktion von FUS bei der Regulation des axonalen Zytoskelettes spricht für eine mögliche Rolle der veränderten axonalen Funktion beim Verlust von Neuronen in ALS/FTD Fällen mit FUS Aggregaten

    Analysis of Bending Waves in Saturn\u27s Rings

    Get PDF
    Saturn\u27s rings are a complex, dynamic system that can provide unique insight into the structure and features of the planet and surrounding system. We use stellar occultation data of Saturn\u27s rings collected from the Cassini Ultraviolet Imaging Spectrograph to visualize and analyze bending waves present within the rings. Analysis of the propagation of these waves gives insight into the surface mass density of the local ring region and can be used to further our understanding of ring dynamics and ring formation. Our analysis of the Mimas 7:4 bending wave estimated a surface mass density between 30 g cm-2 and 43 g cm-2, corroborating the findings of Spilker et al. (2004) of 47 ± 6.2 g cm-2 and supporting our current understanding of linear wave theory. Our analysis of the Mimas 4:2 bending wave estimated the surface mass density to be between 33 g cm-2 and 47 g cm-2 and was of particular interest since this wave is found in the relatively uncharacterized B ring region

    The overlooked carbon loss due to decayed wood in urban trees

    Get PDF
    Decayed wood is a common issue in urban trees that deteriorates tree vitality over time, yet its effect on biomass yield therefore stored carbon has been overlooked. We mapped the occurrence and calculated the extent of decayed wood in standing Ulmus procera, Platanus × acerifolia and Corymbia maculata trees. The main stem of 43 trees was measured every metre from the ground to the top by two skilled arborists. All trees were micro-drilled in two to four axes at three points along the stem (0.3 m, 1.3 m, 2.3 m), and at the tree’s live crown. A total of 300 drilling profiles were assessed for decay. Simple linear regression analysis tested the correlation of decayed wood (cm²) against a vitality index and stem DBH. Decay was more frequent and extensive in U. procera, than P. acerifolia and least in C. maculata. Decay was found to be distributed in three different ways in the three different genera. For U. procera, decay did appear to be distributed as a column from the base to the live crown; whereas, decay was distributed as a cone-shape in P. acerifolia and was less likely to be located beyond 2.3 m. In C. maculata decay was distributed as pockets of variable shape and size. The vitality index showed a weak but not significant correlation with the proportion of decayed wood for P. acerifolia and C. maculata but not for U. procera. However, in U. procera, a strong and significant relationship was found between DBH and stem volume loss (R² = 0.8006, P = 0.0046, n = 15). The actual volume loss ranged from 0.17 to 0.75 m³, equivalent to 5%–25% of the stem volume. The carbon loss due to decayed wood for all species ranged between 69–110 kg per tree. Based on model’s calculation, the stem volume of U. procera trees with DBH ≥ 40 cm needs to be discounted by a factor of 13% due to decayed wood regardless of the vitality index. Decayed wood reduces significantly the tree’s standing volume and needs to be considered to better assess the carbon storage potential of urban forests

    Loss of TDP-43 causes ectopic endothelial sprouting and migration defects through increased fibronectin, vcam 1 and integrin α4/β1

    Full text link
    Aggregation of the Tar DNA-binding protein of 43 kDa (TDP-43) is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia and likely contributes to disease by loss of nuclear function. Analysis of TDP-43 function in knockout zebrafish identified an endothelial directional migration and hypersprouting phenotype during development prior lethality. In human umbilical vein cells (HUVEC) the loss of TDP-43 leads to hyperbranching. We identified elevated expression of FIBRONECTIN 1 (FN1), the VASCULAR CELL ADHESION MOLECULE 1 (VCAM1), as well as their receptor INTEGRIN α4β1 (ITGA4B1) in HUVEC cells. Importantly, reducing the levels of ITGA4, FN1, and VCAM1 homologues in the TDP-43 loss-of-function zebrafish rescues the angiogenic defects indicating the conservation of human and zebrafish TDP-43 function during angiogenesis. Our study identifies a novel pathway regulated by TDP-43 important for angiogenesis during development

    Comparative analysis of salt-induced changes in the leaves proteome of two contrasting Jatropha curcas genotypes / Análise comparativa no proteoma, induzido por salinidade, em folhas de dois genótipos contrastantes de Jatropha curcas

    Get PDF
    The salt stress is one of the major abiotic stress factors limiting the productivity of many agricultural plant species. However, as a sessile organism, plant might adjust their metabolism reprograming many different complex pathway aiming tolerate such different stresses by activating genes and transcriptional factors. Here we investigated the protein differential salt tolerance in two contrasting Jatropha curcas genotypes with a special emphasis on the proteomic changes in the leaves, contributing to the identification of candidate proteins for molecular markers in response to salinity tolerance. 6-months J. curcas plants were kept under 750 mM NaCl salt concentration. After 40 hours of stress, leaves were harvested and protein profile analyzed. Total proteins were extracted, purified and quantified. As results, we identify 110 salinity-responsive differently accumulated proteins in J. curcas, presumably associated with metabolic processes of ADP, ribonucleotides, carbohydrate and pyruvate derivatives, as well as ATP biosynthesis and response to metal ions as the main biological processes associated to tolerant-like J. curcas genotype. The comparative proteome revealed that 110 proteins were salt-responsive in both genotype, while 69 and 41 protein were salt responsive in the CNPAE183 and in CNPAE218, respectively. The tolerant-like genotype presented proteins from different pathways mainly for the salinity response, including proteins involved in signaling, antioxidant metabolism, as well as key enzymes from other metabolic pathways of energy production, such as photosynthesis and glycolysis, suggesting the maintenance of their function growth and development. Our results gave deeper insights into plasticity of salt tolerance responses of J.curcas cultivated under field-condition

    Anwendung des FDM-Referenzmodells RISE-DE im Verbund

    Get PDF
      Der vorliegende Bericht liefert anwendungsbezogene Einblicke in die institutionelle Selbstevaluation von Forschungsdatenmanagement-Services und -Infrastrukturen mit RISE-DE, einem Referenzmodell für Strategieprozesse im institutionellen Forschungsdatenmanagement (FDM), im Verbundkontext der Berlin University Alliance (BUA). Die Selbstevaluation wurde an allen vier Einrichtungen der BUA (Freie Universität Berlin, Humboldt-Universität zu Berlin, Technische Universität Berlin und Charité – Universitätsmedizin Berlin) durchgeführt. Im Ergebnis konnte ein strukturierter und systematischer Überblick über die Gemeinsamkeiten und Unterschiede im Bereich FDM an den vier Einrichtungen gewonnen werden. Der Bericht beschreibt die Erfahrungen bei der Anwendung des RISE-DE-Instruments und gibt Empfehlungen für dessen Einsatz in Verbundstrukturen. Insgesamt hat sich RISE-DE im Kontext der BUA als hilfreiches Werkzeug für die gemeinsame Standortbestimmung im FDM erwiesen, die als Ausgangspunkt zur Konzeptentwicklung für nachhaltige, verbundweit genutzte FDM-Services und -Infrastrukturen dienen soll

    Loss of TDP-43 causes ectopic endothelial sprouting and migration defects through increased fibronectin, vcam 1 and integrin α4/β1

    Get PDF
    Aggregation of the Tar DNA-binding protein of 43 kDa (TDP-43) is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia and likely contributes to disease by loss of nuclear function. Analysis of TDP-43 function in knockout zebrafish identified an endothelial directional migration and hypersprouting phenotype during development prior lethality. In human umbilical vein cells (HUVEC) the loss of TDP-43 leads to hyperbranching. We identified elevated expression of FIBRONECTIN 1 (FN1), the VASCULAR CELL ADHESION MOLECULE 1 (VCAM1), as well as their receptor INTEGRIN α4β1 (ITGA4B1) in HUVEC cells. Importantly, reducing the levels of ITGA4, FN1, and VCAM1 homologues in the TDP-43 loss-of-function zebrafish rescues the angiogenic defects indicating the conservation of human and zebrafish TDP-43 function during angiogenesis. Our study identifies a novel pathway regulated by TDP-43 important for angiogenesis during development

    Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns.

    Get PDF
    Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5' untranslated regions (5'UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood.This is the final published version. It was originally published by PLOS in PLOS Genetics here: http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004417
    • …
    corecore