15 research outputs found

    Problems of multi-species organisms: endosymbionts to holobionts

    Get PDF
    The organism is one of the fundamental concepts of biology and has been at the center of many discussions about biological individuality, yet what exactly it is can be confusing. The definition that we find generally useful is that an organism is a unit in which all the subunits have evolved to be highly cooperative, with very little conflict. We focus on how often organisms evolve from two or more formerly independent organisms. Two canonical transitions of this type—replicators clustered in cells and endosymbiotic organelles within host cells—demonstrate the reality of this kind of evolutionary transition and suggest conditions that can favor it. These conditions include co-transmission of the partners across generations and rules that strongly regulate and limit conflict, such as a fair meiosis. Recently, much attention has been given to associations of animals with microbes involved in their nutrition. These range from tight endosymbiotic associations like those between aphids and Buchnera bacteria, to the complex communities in animal intestines. Here, starting with a reflection about identity through time (which we call “Theseus’s fish”), we consider the distinctions between these kinds of animal–bacteria interactions and describe the criteria by which a few can be considered jointly organismal but most cannot

    Neotropical ant-plant Triplaris americana attracts Pseudomyrmex mordax ant queens during seedling stages

    Get PDF
    The association between the myrmecophyte Triplaris and ants of the genus Pseudomyrmex is an often-reported example of mutualism in the Neotropics. The ants colonize the hollow stems of their hosts, and in exchange, the plants benefit from a reduced degree of herbivory. The previous studies have shown that workers can discriminate their host from other plants, including a closely related species. Little is known about how queens locate their host during the colonization process, but it has been suggested that host recognition is mediated by volatiles. Since queens of Pseudomyrmex mordax colonize their hosts during the seedling stage, we hypothesized that queens would discriminate leaves of seedlings from adult plants. To evaluate our hypothesis, we used a two-sided olfactometer, to test the preference of queens towards different leaf and plant ages of Triplaris americana. Virgin queens of Pseudomyrmex mordax preferred seedlings over adult plants, as well as plant leaves over empty controls, showing no discrimination for leaf age. Our results suggest that the volatiles virgin queens recognize are either produced or are more abundant at the early growing stage of the host when colonization is crucial for the host's survival. © 2017, The Author(s)
    corecore