1,961 research outputs found

    The role of the ubiquitination-proteasome pathway in breast cancer: Applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer

    Get PDF
    The ubiquitin-proteasome pathway is responsible for most eukaryotic intracellular protein degradation. This pathway has been validated as a target for antineoplastic therapy using both in vitro and preclinical models of human malignancies, and is influenced as part of the mechanism of action of certain chemotherapeutic agents. Drugs whose primary action involves modulation of ubiquitin-proteasome activity, most notably the proteasome inhibitor PS-341, are currently being evaluated in clinical trials, and have already been found to have significant antitumor efficacy. On the basis of the known mechanisms by which these agents work, and the available clinical data, they would seem to be well suited for the treatment of breast neoplasms. Such drugs, alone and especially in combination with current chemotherapeutics, may well represent important advances in the therapy of patients with breast cancer

    Spin-dependent transport in p+-CdBxF2-x - n-CdF2 planar structures

    Full text link
    The CV measurements and tunneling spectroscopy are used to study the ballistic transport of the spin-polarized holes by varying the value of the Rashba spin-orbit interaction (SOI) in the p-type quantum well prepared on the surface of the n-CdF2 bulk crystal. The findings of the hole conductance oscillations in the plane of the p-type quantum well that are due to the variations of the Rashba SOI are shown to be evidence of the spin transistor effect, with the amplitude of the oscillations close to e2/h.Comment: 5 pages, 6 figure

    Compared effects of inhibition and exogenous administration of hydrogen sulphide in ischaemia-reperfusion injury

    Get PDF
    INTRODUCTION: Haemorrhagic shock is associated with an inflammatory response consecutive to ischaemia-reperfusion (I/R) that leads to cardiovascular failure and organ injury. The role of and the timing of administration of hydrogen sulphide (H2S) remain uncertain. Vascular effects of H2S are mainly mediated through K+ATP-channel activation. Herein, we compared the effects of D,L-propargylglycine (PAG), an inhibitor of H2S production, as well as sodium hydrosulphide (NaHS), an H2S donor, on haemodynamics, vascular reactivity and cellular pathways in a rat model of I/R. We also compared the haemodynamic effects of NaHS administered before and 10 minutes after reperfusion. METHODS: Mechanically ventilated and instrumented rats were bled during 60 minutes in order to maintain mean arterial pressure at 40 +/- 2 mmHg. Ten minutes prior to retransfusion, rats randomly received either an intravenous bolus of NaHS (0.2 mg/kg) or vehicle (0.9% NaCl) or PAG (50 mg/kg). PNU, a pore-forming receptor inhibitor of K+ATP channels, was used to assess the role of K+ATP channels. RESULTS: Shock and I/R induced a decrease in mean arterial pressure, lactic acidosis and ex vivo vascular hyporeactivity, which were attenuated by NaHS administered before reperfusion and PNU but not by PAG and NaHS administered 10 minutes after reperfusion. NaHS also prevented aortic inducible nitric oxide synthase expression and nitric oxide production while increasing Akt and endothelial nitric oxide synthase phosphorylation. NaHS reduced JNK activity and p-P38/P38 activation, suggesting a decrease in endothelial cell activation without variation in ERK phosphorylation. PNU + NaHS increased mean arterial pressure when compared with NaHS or PNU alone, suggesting a dual effect of NaHS on vascular reactivity. CONCLUSION: NaHS when given before reperfusion protects against the effects of haemorrhage-induced I/R by acting primarily through a decrease in both proinflammatory cytokines and inducible nitric oxide synthase expression and an upregulation of the Akt/endothelial nitric oxide synthase pathway

    Successful transduction with AAV vectors after selective depletion of anti-AAV antibodies by immunoadsorption

    Get PDF
    Gene therapy with adeno-associated virus (AAV)-based vectors shows great promise for the gene therapeutic treatment of a broad array of diseases. In fact, the treatment of genetic diseases with AAV vectors is currently the only in vivo gene therapy approach that is approved by the US Food and Drug Administration (FDA). Unfortunately, pre-existing antibodies against AAV severely limit the patient population that can potentially benefit from AAV gene therapy, especially if the vector is delivered by intravenous injection. Here, we demonstrate that we can selectively deplete antiAAV antibodies by hemapheresis combined with AAV9 particles coupled to Sepharose beads. In rats that underwent hemapheresis and immunoadsorption, luciferase expression was dramatically increased in the hearts and fully restored in the livers of these rats. Importantly, our method can be readily adapted for the use in clinical AAV gene therapy.Fil: Orlowski, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; Argentina. Icahn School of Medicine at Mount Sinai. Graduate School of Biomedical Sciences. Cardiovascular Institute; Estados UnidosFil: Katz, Michael G.. Icahn School of Medicine at Mount Sinai. Graduate School of Biomedical Sciences. Cardiovascular Institute; Estados UnidosFil: Gubara, Sarah M.. Icahn School of Medicine at Mount Sinai. Graduate School of Biomedical Sciences. Cardiovascular Institute; Estados UnidosFil: Fargnoli, Anthony S.. Icahn School of Medicine at Mount Sinai. Graduate School of Biomedical Sciences. Cardiovascular Institute; Estados UnidosFil: Fish, Kenneth M.. Icahn School of Medicine at Mount Sinai. Graduate School of Biomedical Sciences. Cardiovascular Institute; Estados UnidosFil: Weber, Thomas. Icahn School of Medicine at Mount Sinai. Graduate School of Biomedical Sciences. Cardiovascular Institute; Estados Unido
    • …
    corecore