6,912 research outputs found

    Topological Phase Transitions and Holonomies in the Dimer Model

    Get PDF
    We demonstrate that the classical dimer model defined on a toroidal hexagonal lattice acquires holonomy phases in the thermodynamic limit. When all activities are equal the lattice sizes must be considered mod 6 in which case the finite size corrections to the bulk partition function correspond to a massless Dirac Fermion in the presence of a flat connection with nontrivial holonomy. For general bond activities we find that the phase transition in this model is a topological one, where the torus degenerates and its modular parameter becomes real at the critical temperature. We argue that these features are generic to bipartite dimer models and we present a more general lattice whose continuum partition function is that of a massive Dirac Fermion.Comment: 7 pages, 4 figures. Minor corrections with additional figure

    Josephson junctions in thin and narrow rectangular superconducting strips

    Full text link
    I consider a Josephson junction crossing the middle of a thin rectangular superconducting strip of length L and width W subjected to a perpendicular magnetic induction B. I calculate the spatial dependence of the gauge-invariant phase difference across the junction and the resulting B dependence of the critical current Ic(B).Comment: 4 pages, 6 figures, revised following referee's comment

    The Omega Deformation From String and M-Theory

    Get PDF
    We present a string theory construction of Omega-deformed four-dimensional gauge theories with generic values of \epsilon_1 and \epsilon_2. Our solution gives an explicit description of the geometry in the core of Nekrasov and Witten's realization of the instanton partition function, far from the asymptotic region of their background. This construction lifts naturally to M-theory and corresponds to an M5-brane wrapped on a Riemann surface with a selfdual flux. Via a 9-11 flip, we finally reinterpret the Omega deformation in terms of non-commutative geometry. Our solution generates all modified couplings of the \Omega-deformed gauge theory, and also yields a geometric origin for the quantum spectral curve of the associated quantum integrable system.Comment: LaTeX, 35 pages, 1 figure. Appendix on couplings of hypermultiplets in N=4 SYM adde

    Notes on Matter in Horava-Lifshitz Gravity

    Full text link
    We investigate the dynamics of a scalar field governed by the Lifshitz-type action which should appear naturally in Horava-Lifshitz gravity. The wave of the scalar field may propagate with any speed without an upper bound. To preserve the causality, the action cannot have a generic form. Due to the superluminal propagation, a formation of a singularity may cause the breakdown of the predictability of the theory. To check whether such a catastrophe could occur in Horava-Lifshitz gravity, we investigate the dynamics of a dust. It turns out that the dust does not collapse completely to form a singularity in a generic situation, but expands again after it attains a maximum energy density.Comment: 14 pages, references adde

    Electromagnetically induced transparency in superconducting quantum circuits : Effects of decoherence, tunneling and multi-level cross-talk

    Full text link
    We explore theoretically electromagnetically-induced transparency (EIT) in a superconducting quantum circuit (SQC). The system is a persistent-current flux qubit biased in a Λ\Lambda configuration. Previously [Phys. Rev. Lett. 93, 087003 (2004)], we showed that an ideally-prepared EIT system provides a sensitive means to probe decoherence. Here, we extend this work by exploring the effects of imperfect dark-state preparation and specific decoherence mechanisms (population loss via tunneling, pure dephasing, and incoherent population exchange). We find an initial, rapid population loss from the Λ\Lambda system for an imperfectly prepared dark state. This is followed by a slower population loss due to both the detuning of the microwave fields from the EIT resonance and the existing decoherence mechanisms. We find analytic expressions for the slow loss rate, with coefficients that depend on the particular decoherence mechanisms, thereby providing a means to probe, identify, and quantify various sources of decoherence with EIT. We go beyond the rotating wave approximation to consider how strong microwave fields can induce additional off-resonant transitions in the SQC, and we show how these effects can be mitigated by compensation of the resulting AC Stark shifts

    Silicon Superconducting Quantum Interference Device

    Full text link
    We have studied a Superconducting Quantum Interference SQUID device made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the Gas Immersion Laser Doping (GILD) technique. The SQUID device is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.Comment: Published in Applied Physics Letters (August 2015

    Long Josephson Tunnel Junctions with Doubly Connected Electrodes

    Get PDF
    In order to mimic the phase changes in the primordial Big Bang, several "cosmological" solid-state experiments have been conceived, during the last decade, to investigate the spontaneous symmetry breaking in superconductors and superfluids cooled through their transition temperature. In one of such experiments the number of magnetic flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel junction built on top of the loop itself. We have analyzed this system and found a number of interesting features not occurring in the conventional case with simply connected electrodes. In particular, the fluxoid quantization results in a frustration of the Josephson phase, which, in turn, reduces the junction critical current. Further, the possible stable states of the system are obtained by a self-consistent application of the principle of minimum energy.Comment: 34 pages, 9 figures, Phys. Rev. B April 201

    Equilibrium properties of a Josephson junction ladder with screening effects

    Full text link
    In this paper we calculate the ground state phase diagram of a Josephson Junction ladder when screening field effects are taken into account. We study the ground state configuration as a function of the external field, the penetration depth and the anisotropy of the ladder, using different approximations to the calculation of the induced fields. A series of tongues, characterized by the vortex density ω\omega, is obtained. The vortex density of the ground state, as a function of the external field, is a Devil's staircase, with a plateau for every rational value of ω\omega. The width of each of these steps depends strongly on the approximation made when calculating the inductance effect: if the self-inductance matrix is considered, the ω=0\omega=0 phase tends to occupy all the diagram as the penetration depth decreases. If, instead, the whole inductance matrix is considered, the width of any step tends to a non-zero value in the limit of very low penetration depth. We have also analyzed the stability of some simple metastable phases: screening fields are shown to enlarge their stability range.Comment: 16 pp, RevTex. Figures available upon request at [email protected] To be published in Physical Review B (01-Dec-96

    Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure

    Full text link
    Measurements of thermal activation are made in a superconducting, niobium Persistent-Current (PC) qubit structure, which has two stable classical states of equal and opposite circulating current. The magnetization signal is read out by ramping the bias current of a DC SQUID. This ramping causes time-ordered measurements of the two states, where measurement of one state occurs before the other. This time-ordering results in an effective measurement time, which can be used to probe the thermal activation rate between the two states. Fitting the magnetization signal as a function of temperature and ramp time allows one to estimate a quality factor of 10^6 for our devices, a value favorable for the observation of long quantum coherence times at lower temperatures.Comment: 14 pages, 4 figure
    corecore