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In order to mimic the phase changes in the primordial Big Bang, several cosmological solid-state experiments
have been conceived, during the last decade, to investigate the spontaneous symmetry breaking in superconductors
and superfluids cooled through their transition temperature. In one of such experiments, the number of magnetic
flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel
junction built on top of the loop itself. We have analyzed this system and found a number of interesting features not
occurring in the conventional case with simply connected electrodes. In particular, the fluxoid quantization results
in a frustration of the Josephson phase, which, in turn, reduces the junction critical current. Further, the possible
stable states of the system are obtained by a self-consistent application of the principle of minimum energy.
The theoretical findings are supported by measurements on a number of samples having different geometrical
configuration. The experiments demonstrate that a very large signal-to-noise ratio can be achieved in the flux
quanta detection.

DOI: 10.1103/PhysRevB.85.094514 PACS number(s): 03.70.+k, 05.70.Fh, 03.65.Yz

I. INTRODUCTION

Long Josephson tunnel junctions (LJTJs) were traditionally
used to investigate the physics of nonlinear phenomena.1 In
the last decade, they have been employed to shed light on
other fundamental concepts in physics such as the symmetry
principles and how they are broken.2–4 A recent experiment5

has demonstrated spontaneous symmetry breaking during the
superconducting phase transition of a metal ring and both
fluxoids or antifluxoids can be trapped in the ring while it
is cooled rapidly through the superconducting critical tem-
perature. The basic phenomenon of quantization of magnetic
flux in a multiply connected superconductor was suggested
long time ago as one among several possible condensed matter
cosmological experiments6 suitable to check the validity of the
causality principle in the early universe.7 In the experiment of
Ref. 5, the magnetic flux quanta are spontaneously trapped in
the ring during its cooling through the transition temperature.
Much later at lower temperature when superconductivity is
fully established, the number 0, ± 1, ± 2, . . . of flux quanta is
registered as a function of the quench rate. This can be done in
a variety of ways; one of which is the detection of the induced
persistent currents by the magnetic field modulation of the
critical current of a planar LJTJ built on top of the ring. In these
experiments, the quench rate can be varied over four decades.
This allows for an accurate check of the theoretical predictions
of the involved second-order phase transitions. This is of
interest within cosmology and of major importance for the
physical understanding of many order-disorder processes.
However, the working principles of that experiment had not
yet been reported. The general task of this work is to study
the static properties of a planar LJTJ for which at least one

of the superconducting electrodes is multiply connected, i.e.,
not every closed path can be transformed into a point. In the
simplest case, one of the superconducting thin-film stripes
forming the LJTJ is shaped as a doubly-connected loop. This
configuration is illustrated in Fig. 1(a) in which the ring-shaped
base electrode is in black, while the top electrode is in gray
and the junction area is in white. The geometry of the loop is
not critical to our discussion; however, a ring-shaped bottom
electrode simplifies the analysis.

For the sake of generality, in our analysis, we will include
an external flux �e linked to the loop by some externally
applied field and the presence of an integer number n of
flux quanta trapped in the loop; altogether they induce a
current Icir = (n�0 − �e)/Lloop circulating clockwise in the
loop and inversely proportional to its inductance, Lloop; in
turns, the circulating current produces at the loop surface a
radial magnetic field, Hrad ∝ Icir, that adds to any external field,
Happ, applied in the loop plane. With no loss of generality, we
will assume that the width, Wt , of the top film does not exceed
the width, Wb, of the bottom one, Wt � Wb and, to simplify
the analysis, we will also assume that both widths are much
smaller than the mean radius R of the ring; in this narrow
ring approximation, the current distribution in the ring and
the surface radial field become radially independent.8 A dc
current I is injected into the loop at an arbitrary point O along
the ring and is inductively split in the two loop arms before
going through the LJTJ; let α (1-α) be the fraction of the
bias current I diverted in the left (right) side of the loop. In
principle, α values outside the [0,1] range are possible if the
current I would include also a persistent current Icir circulating
in the loop: however, since the two currents are independent,
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FIG. 1. (a) Sketch of an in-line Josephson tunnel junction with
a single doubly connected ring-shaped base electrode. Lloop = L1 +
L2 + Lb. (b) Sketch of an in-line Josephson tunnel junction with two
doubly connected electrodes. The base electrode is in black, the top
electrode is in gray, and the tunneling insulating layer is white. The
dotted withe arrows indicate the direction of the circulating currents.

we will treat them separately. Independently of the α value,
the bias current I is extracted at one end of the junction
via the top electrode. With the current entering and exiting at
the junction extremities, we have the well-known case of the
so-called in-line configuration treated in the pioneering works
on LJTJs soon after the discovery of the Josephson effect.9–13

Throughout the paper we will limit our interest to LJTJs in
the zero-voltage time-independent state; this can be achieved
as far as the applied current I is smaller than the junction
critical current Ic. To further simplify the analysis, we assume
that the Josephson current density Jc is uniform over the
barrier area and that the junction width W is smaller than
the Josephson penetration depth λJ ≡ √

�0/2πμ0deJc setting
the length unit of the physical processes occurring in the
Josephson junction (here, �0 is the magnetic flux quantum,
μ0 the vacuum permeability, and de the junction magnetic
thickness). The gauge-invariant phase difference φ of the order
parameters of the superconductors on each side of the tunnel
barrier obeys the Josephson equations:15

JZ(X) = Jc sin φ(X) (1)

and

κ∇φ(X) = H × n̂, (2)

in which −L/2 � X � L/2 is a curvilinear coordinate and L

is the long dimension of the junction. The net current crossing
the tunnel barrier is I ≡ W

∫ L/2
−L/2 JZ(X)dX. The last equation

states that the phase gradient is everywhere proportional to the
local magnetic field H and parallel to the barrier plane. There-
fore, in the case of a curvilinear one-dimensional junction, a
uniform external field applied in the junction plane has to be
replaced by its radial component.16 κ ≡ �0/2πdeμ0 = Jcλ

2
J

has the dimension of a current (κ ≈ 2.5 mA when de ≈
100 nm, which is typical of all-Niobium Josephson junctions)
and n̂ is the versor normal to the insulating barrier separating
the two superconducting electrodes. It is well known9,10 that
combining Eqs. (1) and (2) with the static Maxwell’s equations,
a static sine-Gordon equation is obtained that describe the
behavior of a one-dimensional in-line LJTJ:

λ2
J

d2φ

dX2
= sin φ(X). (3)

Equation (3) was first introduced in the analysis of asymmetric
in-line LJTJs by Ferrel and Prange9 in 1963; few years
later, Owen and Scalapino10 reported an extensive study
of its analytical solutions for symmetric in-line Josephson
junctions (provided that L � πλJ /2). Ampere’s law applied
along the barrier perimeter requires that the magnetic fields
at the two ends of the junctions differ by the amount of the
enclosed current: I = W[HY (L/2) − HY (−L/2)]. We remark
that Eqs. (1), (2), and (3) automatically satisfy the Ampere’s
law.

As it is usually done in the modeling of Josephson
interferometers, it is useful to divide the loop inductance Lloop

in three inductive paths characterized by positive coefficients
L1, L2, and Lb having units of inductance such that Lloop =
L1 + L2 + Lb so that any current Icir circulating around the
loop sees them in series; furthermore, α = 1 (α = 0) in the
limit of L2 � L1 + Lb (L2 � L1 + Lb). More specifically,
L1,2 is the angular fraction ϑ1,2/2π of the inductance for
an isolated superconducting narrow (Wb � R) ring8 Lring =
μ0R(ln 8R/Wb − 2 + ln 4) and Lb, that should not be mis-
taken as the inductance of the LJTJ, is given by the junction
physical length L times the inductance per unit length of the
junction bottom strip line Lb, related to the magnetic energy
stored within a London penetration distance of its surface. If
the bottom and top superconducting films have, respectively,
thickness db and dt and bulk London penetration depths λLb

and λLt , then, in presence of a quasistatic magnetic field, their
effective penetration depth17 is λb,t = λLb,t tanh(db,t /2λLb,t ),
which reduces to λLb,t in the case of thick superconducting
films (db,t > 5λLb,t ). The magnetic penetration de of a tunnel
barrier with negligible height tox � db,t is17 de 	 λb + λt .
Insofar, as the width Wb is much larger18,19 than the strip-line
magnetic thickness de, then Lb 	 μ0λb/Wb; this expression
also takes into account the kinetic inductance due to the motion
of the superelectrons. In the wide-strip approximation, most
of the magnetic energy is confined in the region between
the plates and the fringing field can be ignored; as the strip
width becomes narrower, the fringe field effects become more
important and may dominate if Wb and de are comparable.20

It is worth pointing out that, since, in all practical cases, the
width of the loop is much larger than the London penetration
depth, then Lb is considerably smaller than the inductance
per unit length along the ring Lring/2πR; this is due to the
presence of a counter electrode acting as a superconducting
ground plane.20,21 Similarly, we introduce Lt 	 μ0λt/Wt ,
the inductance per unit length along the current direction
of the top plate. Since the electrodes have different widths
and penetration depths, in general, Lt 
= Lb. In Sec. III, we
will show that for our high quality all-Niobium LJTJs, having
the base electrode thinner and wider than the top one, we
foundLt ≈ 3Lb. According to the theory of the two-conductor
transmission lines,22 the inductance per unit length LJ of a
LJTJ, seen as a transmission line structure, is simply obtained
as the sum of the inductances/unit lengths of the bottom and
top stripes, i.e.,

LJ = Lb + Lt = μ0

(
λb

Wb

+ λt

Wt

)
. (4)
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Historically, the boundary conditions for Eq. (3) were
derived under the implicit assumption that Wb = Wt = W,
so that21,23 LJ = μ0de/W. However, these conditions are not
fulfilled in real samples, especially for window-type LJTJs
used nowadays whose electrodes have quite different widths;
typically, Wb > Wt > W.

The paper is organized in the following way. In Sec. II,
we will overcome this limitation by extending the existing
theoretical model10 to LJTJs having different electrodes
widths, strictly speaking, different inductances per unit length.
At the same time, we will derive the most general boundary
conditions for Eq. (3) needed to correctly describe any self-
field effect in LJTJs. Next we will focus on the specific case
of LJTJs with doubly connected electrode(s). Later on, we
will consider the consequences of the fluxoid quantization and
energy minimization principles. In the next section, we will
describe our experimental setup and our samples; in addition,
we will present their magnetic diffraction patterns and discuss
how the experimental findings can be unambiguously inter-
preted in term of our modeling. Finally, the conclusions will
be drawn in Sec. IV.

II. THEORY

Figure 2(a) displays the top view of an in-line LJTJ having
the most general biasing configuration. Only three of the
four currents Ii indicated in the figure are independent, since
the charge conservation requires that I1 + I4 = I2 + I3. In
addition, the Ii’s can be expressed in terms of the net current
I crossing the tunnel barrier as I = I1 − I2 = I3 − I4. The
junction cross section is sketched in Fig. 2(b) together with the
current distribution at the input and output end of the Josephson
structure and along the junction electrodes. Here, Ib(X) and
It (X) denote, respectively, the local supercurrent flowing
parallel to the insulating layer in the bottom and top junction
electrodes with X ∈ [−L/2,L/2], so that I1 = Ib(−L/2),
I2 = Ib(L/2), I3 = It (L/2), and I4 = It (−L/2). Next we
observe that, due to the charge conservation, the total current,
Ib(X) + It (X), through any junction cross section in the Y -Z
plane must be constant. For in-line LJTJs, it is important
to distinguish between the symmetric and fully asymmetric
configurations: in the former, the bias current I enters at
one extremity and exits at the other10,11,14 (I = ±I1 = ±I3

and I2 = I4 = 0), while in the latter, the bias current enters
and exits from the same extremity9,11–13 (I = ±I1 = ∓I4 and
I2 = I3 = 0). We will analyze the general cases when all

FIG. 2. (a) Top view (not to scale) of an in-line long Josephson
tunnel junction in the most general bias configuration. (b) Cross
section (not to scale) of the junction area showing the currents in the
electrodes. The base electrode is in black, the top electrode in gray,
and the tunneling insulating layer is white in (a), while it has a wavy
pattern in (b).

FIG. 3. Elementary cell of the equivalent lumped circuit for the
static Josephson transmission line.

Ii 
= 0. The coordinate system used in this work is indicated
in Figs. 2(a) and 2(b).

A. Boundary conditions

Figure 3 shows one elementary cell of the equivalent circuit
for a static Josephson junction transmission line. Classically,
the two inductances have been merged in their parallel
combination23,24 so that the role played by each supercurrent
separately was lost; however, for our purposes it is mandatory
to keep the distinction, since, in general, Lb 
= Lt . In the
absence of an external in-plane field, Happ = 0, the magnetic
flux 	�j linked to the cell is

	�j = Lt	XIt − Lb	XIb,

where25 �j = �0φ/2π . Then, in the limit 	X → 0,

�0

2π

dφ

dX
= Lt It (X) − LbIb(X). (5)

By differentiating Eq. (5), in force of Eq. (3), we end up
with

Lt

dIt (X)

dX
− Lb

dIb(X)

dX
= μ0deJZ(X).

Interestingly, by integrating back the equation above over
the junction length L and considering that, according to the
notations of Fig. 2, It (L/2) = I3, It (−L/2) = I4, Ib(L/2) =
I2, and Ib(−L/2) = I1, we find Lb + Lt = μ0de/W, i.e.,
λb/Wb + λt/Wt ≈ (λb + λt )/W; clearly, this can only be
acceptable if W ≈ Wb ≈ Wt . To overcome this limitation,
we introduce a new (smaller) effective barrier penetration
d ′

e ≡ WLJ /μ0 that takes into account the screening effect
expected when the junction electrodes are wider than the
tunneling barrier, namely,

d ′
e = λb

W

Wb

+ λt

W

Wt

= λb

wb

+ λt

wt

, (6)

where wb,t denotes the width ratio Wb,t/W. Being wb,t � 1,
then d ′

e � λb + λt ≡ de. We stress that a smaller magnetic
penetration results in a smaller magnetic flux through the
Josephson barrier (in small junctions or at the extremities
of LJTJs), but not to a reduced amplitude of the magnetic
field threading the barrier. Indeed, we believe that, due
to demagnetization effects in the finite-thickness films, the
amplitude of the magnetic field threading the barrier is larger
than that of the applied field. The effects of a reduced
magnetic thickness and an increased field amplitude partially
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compensate each other; however, this is not a good reason to
ignore them. Since the screening and demagnetization effects
depends, respectively, on the film widths and thicknesses, they
are independent; we leave the investigation of demagnetization
in Josephson structures to a future study. In the rest of this
section, we will carry out our analysis substituting de with d ′

e

in the magnetic Josephson equation Eq. (2); consequently,
this new magnetic thickness also enters in expression for
the Josephson penetration depth and corresponds to the λJ

inflation, already investigated using different approaches,26–28

occurring in window-type Josephson tunnel junctions. For
future purposes, we also introduce the two relative inductances
per unit lengths 
b ≡ Lb/LJ and 
t ≡ Lt /LJ = 1 − 
b and
we note that, whenLb = Lt , then 
b = 
t = 1/2 as it was im-
plicitly assumed in all previous analytical works on LJTJs. We
anticipate here that for our samples, we found quite different
relative inductance per unit lengths, namely, 
b ≈ 0.26 and

t ≈ 0.74. A practical expression for computing the bottom
relative inductance not involving the junction width W is


−1
b = 1 + λtWb

λbWt

. (7)

Inserting Eq. (5) into the magnetic Josephson equation (2),
we obtain the local magnetic field in the barrier plane HY (X)
in terms of Ib and It :

HY (X) = κ
dφ

dX
= 
tIt (X) − 
bIb(X)

W
. (8)

Even when the junction electrodes are made of the same
material and have the same thickness and quality, meaning
that λt = λb, then the dependence on the electrode widths
remains

HY (X) 	 It (X)Wb − Ib(X)Wt

W(Wb + Wt )
.

Equation (8) allows us to correctly derive the boundary
conditions for the static sine-Gordon equation in Eq. (3) in the
general case W 
= Wb and W 
= Wt and in the presence of an
in-plane field Happ:

κ
dφ

dX

∣∣∣∣
X=−L/2

= HY

(
−L

2

)
= Happ + 
tI4 − 
bI1

W
,

κ
dφ

dX

∣∣∣∣
X=L/2

= HY

(
L

2

)
= Happ + 
tI3 − 
bI2

W
. (9)

For 
b = 
t = 1/2, we recover the boundary conditions
by Owen and Scalapino10 (I1 = I3 = I and I2 = I4 = 0)
that were generally adopted thereafter for untrue symmetry
reasons. From the boundary conditions above, it follows that

HY

(
−L

2

)
+HY

(
L

2

)
=2Happ+
t (I3 + I4) − 
b(I1 + I2)

W
,

where the last term, vanishing when 
b = 
t and I4 + I3 =
I1 + I2, has been omitted in all previous analysis of in-line
LJTJs. We like to point out that Eq. (9) is very general and
should be used to correctly describe the so-called self-field
effects occurring in LJTJ. They also apply to LJTJs with mixed
in-line and overlap biasing. Unfortunately, their implementa-
tion requires the separate knowledge of the bottom and top
electrode inductances per unit length (rather than their sum).

Indeed, the inductance per unit length was analytically derived
by Chang20 for a superconducting strip transmission line,
i.e., a structure consisting of a finite-width superconducting
strip over an infinite superconducting ground plane, as far as
the strip linewidth Wt exceeds about the insulation thickness
tox. Definitely, his results can be used when Wb � Wt , but,
unfortunately, no analytical expression is available when both
electrodes have finite and comparable widths.

1. Single loop

Let us choose that the currents are positive when they flow
from the left to the right junction ends, i.e., counterclockwise
in the case of a ring-shaped electrode sketched in Fig. 1(a).
Then the boundary conditions for the single loop case can be
derived as follows. With reference to Figs. 2, we recognize
that for the single loop configuration I1 = −Icir + αI , I2 =
−Icir − (1 − α)I , I3 = I , and I4 = 0. Then Eq. (9) becomes

κ
dφ

dX

∣∣∣∣
X=−L/2

= HY (−L/2) =

= Happ + 
b

W
(Icir − αI ) = He − α
b

W
I,

κ
dφ

dX

∣∣∣∣
X=L/2

= HY (L/2) = HY (−L/2)

+ I

W
= He +

(
1 − α
b

W

)
I, (10)

with He ≡ Happ + Hrad and

Hrad = 
bIcir

W
. (11)

Of course, if the loop is formed by the top rather than the
bottom electrode, 
t should replace 
b in the above expres-
sion. Next, in this specific case, in order to have Ib(−L/2) =
−Icir + αI , Ib(L/2) = −Icir − (1 − α)I , It (−L/2) = 0, and
It (L/2) = I , it must be that

Ib(X) = −Icir + αI − Wj

∫ X

−L/2
Jz(X

′)dX′ (12)

and

It (X) = Wj

∫ X

−L/2
Jz(X

′)dX′. (13)

In normalized units of x ≡ X/λJ , the differential equation (3)
becomes

d2φ

dx2
= sin φ(x), (14)

with x ∈ [−�/2,�/2] and � ≡ L/λJ is the junction normalized
length. Further, we will normalize the magnetic fields to JcλJ ,
so that the boundary conditions (10) for a LJTJ with a doubly
connected base electrode are

dφ

dx

∣∣∣∣
x=−�/2

≡ hl = he − α
bι;

× dφ

dx

∣∣∣∣
x=�/2

≡ hr = hl + ι, (15)
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where the term ι ≡ I/I0 = hr − hl is the external bias current
I normalized to I0 ≡ JcWλJ . With these notations, the nor-
malized critical magnetic field hc of a short Josephson junction
is 2π/�; further, defining icir ≡ Icir/I0 and hrad ≡ Hrad/JcλJ =

bicir, then he ≡ happ + hrad = happ + 
bicir. We note that
what matters now is the product α
b, rather than α itself and
that the symmetry condition now corresponds to 2α
b = 1,
which can never be achieved if 
b < 1/2. In the early
eighties,14 the reported asymmetric behavior of samples that
were believed to be symmetric led many experimentalists to
abandon the in-line geometry in favor of the overlap one.

2. Double loop

We now consider the most general case of a LJTJ having
both electrodes doubly connected. For the sake of simplicity,
we now assume the two loops to be rectangular, as depicted in
Fig. 1(b), where β is the fraction of the current I diverted in the
left arm of the top-electrode loop (obviously, it is impossible to
realize a topologically equivalent layout with two rings). As in-
dicated, the magnetic fluxes �e,t and �e,b linked, respectively,
to the top and bottom loops induce the clockwise circulating
currents Icir,t and Icir,b in the respective loops. Further,
we recognize that I1 = −Icir,b + αI , I2 = −Icir,b − (1 − α)I ,
I3 = −Icir,t + (1 − β)I , and I4 = −Icir,t − βI . From Eq. (9),
the boundary conditions are

κ
dφ

dX

∣∣∣∣
X=−L/2

= HY (−L/2) = He − β
t + α
b

W
I,

κ
dφ

dX

∣∣∣∣
X=L/2

= HY (L/2) = HY (−L/2) + I

W
, (16)

with He ≡ Happ + Hrad and Hrad ≡ (
bIcir,b + 
tIcir,t )/W;
we note that the two circulating currents interfere construc-
tively since they flow in opposite directions but also on
the opposite sides of the tunnel barrier. The single loop
configuration can be considered as a particular case of the
double loop configuration in which β = 0 (or 1). Similarly,
the free junction can be recovered by setting both α and β

in Eq. (16) to any of their extreme values. In the rest of the
paper, we will limit our analysis to devices with the single loop
configuration for which experimental data are available.

B. Approximate solutions for LJTJs

With the assumption that the Josephson junction is so
long that the magnetic field in its center can be neglected,
φx(0) 	 0, an approximate solution of Eq. (14) is given by the
superposition of two static noninteracting fractional fluxons
pinned at the junctions extremities:29

φ(x) = φl(x) + φr (x), (17)

with φl(x) = 4 sgnhl tan−1 exp −(x + ξl + �/2) and φr (x) =
4 sgnhr tan−1 exp(x − ξr − �/2), and sgn is the signum func-
tion. We observe that φl and φr do not overlap, φl(x) φr (x) 	
0, so that φ2(x) ≈ [φl(x)]2 + [φr (x)]2 (similar arguments
hold for the phase derivatives). As an example, for � = 10,
both |φl(x) φr (x)| and |φl

x(x) φr
x(x)| are everywhere less than

8 × 10−4. The phase profile in Eq. (17) can also be cast in the

form:9

sin
φ(x)

2
= sgnhl sech

(
x + ξl + �

2

)

+sgnhr sech

(
x + ξr − �

2

)
.

From the phase derivative:

φx(x) = −2 sgnhl sech

(
x + ξl + �

2

)

+2 sgnhr sech

(
x − ξr − �

2

)
,

we infer that ξl and ξr are two non-negative independent
constants set by the magnetic field at the boundaries hr,l :

hr,l ≡ φx

(
±�

2

)
= ±2 sin

φ(±�/2)

2
= 2 sgnhr,l sechξr,l,

(18)

i.e., ξr,l = cosh−1 |2/hr,l|. This indicates that, in the Meissner
state, the largest possible amplitudes of the boundary fields
are30 hr = hl = 2, corresponding to ι = 0; then the junction
critical field is hc = 2, corresponding to Hc = 2JcλJ .

It is worth to remark that the solution in Eq. (17) only
depends on the specific boundary conditions imposed by the
system geometry. However, in the limit of vanishingly small
bias current, the self-field effects disappear and the junction
geometrical configuration does not affect the phase profile;
in other words, for he = ±2, in-line, overlap, and δ-biased31

LJTJs all have the phase profile given by Eq. (17) with hr =
hl = ±2.

It can be easily proved that φ(0) 	 φx(0) 	 0 and
that, with ξl,r = 0, then φ(±�/2) = sgnhr,l π , meaning that
Eq. (17) corresponds to a semifluxon (π jump) at each
junction end, as shown in Fig. 4(a) for � = 10 and
hr = −hl = 2. For the second derivative of the phase, we
have φxx(x) = sin φ = −2 sgnhl sech(x + ξl + �/2) tanh(x +
ξl + �/2) +2 sgnhl sech(x − ξr − �/2) tanh(x + ξr − �/2).

As |hl| (|hr |) exceeds hc, then ξl (ξr ) becomes negative, the
solution in Eq. (17) is no longer stable and we exit the Meissner
regime; in fact, for ξl,r < 0, the phase at the extremities grows
above the threshold value |φ| = π/2 and in a dynamic scenario
one (or more) integer vortex (fluxon, antifluxon) gradually
develops at each extremity and moves toward the center under
the effect of the Lorentz force so that some magnetic flux
enters into the junction interior.

Furthermore, for generic non-negative ξr,l values, the phase
difference across the junction length 	φ ≡ φ(�/2) − φ(−�/2)
is

	φ = 2 sin−1 hr

2
+ 2 sin−1 hl

2
, (19)

and corresponds to what has been called a k-fractional vortex
in Refs. 32 and 33, where k ≡ 	φ/2π . Presently, semi
(ξr,l = 0) and fractional (ξr,l > 0) vortices are receiving a great
deal of attention in the context of 0-π transition Josephson
junctions.34–36
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FIG. 4. (a) Phase profile φ(x) of a long (� = 10) in-line symmetric (α = 1) Josephson tunnel junction as in Eq. (17) for hr = −hl = 2 that
is ξl,r = 0, (b) its first derivative φx , (c) its second derivative φxx , and (d) its normalized energy density HsG.

C. Junction energy

By applying a Lagrangian formalism1,25 to the sine-Gordon
equation, it is possible to derive that the (static) Hamiltonian
density HsG of a LJTJ is

HsG(x) = φ2
x

2
+ 1 − cos φ, (20)

in which the first term accounts for the magnetic energy stored
in and between the junction electrodes and (1 − cos φ) is
the Josephson energy density associated with the Cooper-pair
tunneling current.

The phase solution, Eq. (17), for LJTJs also satisfies
the equality 2(1 − cos φ) = φ2

x , meaning that for very long
junctions, the Josephson energy density equals the magnetic
energy density (this is not true for intermediate length junctions
with � < 2π ). Inserting the expression of the phase profile
Eq. (17) in Eq. (20), then the junction energy density reduces
to

HsG(x) = [φx(x)]2 = 4 sech2

(
x + ξl + �

2

)

+ 4sech2

(
x + ξr − �

2

)
, (21)

which is shown in Fig. 4(d) for � = 10 and ξl,r = 0. The
junction energy ĤsG can be computed from Eq. (21) as
a function of the boundary conditions hl,r < 0, i.e., of the
external magnetic field he and bias current ι,

ĤsG =
∫ �/2

−�/2
H(x)dx = Ê0

(
1 − tanh ξl

2
− tanh ξr

2

)

= Ê0

⎛
⎝1 −

√
4 − h2

r

4
−

√
4 − h2

l

4

⎞
⎠ , (22)

where tanh ξl,r = √
1 − sech2(ξl,r ) = √

1 − (hl,r/2)2 and
Ê0 = 8 is the well-known fluxon rest mass25 normalized to
E0 = I0�0/2π that, depending on the junction’s electrical and
geometrical parameters, represents its characteristic energy
unit; typically, E0 is in the 10−18J range, that is, several orders
of magnitude larger than the thermal energy at cryogenic
temperatures. In real units, the junction energy is EJ ≡
E0ĤsG.

For the particular case of a symmetric junction (2α
b = 1)
in zero field (he = 0), then hr = −hl = ι/2 so that Eq. (22)

reduces to

ĤsG(ι) = Ê0(1 −
√

1 − ι2/16)

= 4(ι/4)2 + (ι/4)4 + 0.5(ι/4)6 + O(ι8). (23)

Figure 5 displays the numerically computed zero-field energy
ĤsG versus ι2 for symmetric in-line junctions having different
normalized lengths �; for � > 2π , the numerical findings are
very well approximated by Eq. (23). As the expansion in
the right-hand side of Eq. (23) indicates, an LJTJ can be
thought of as a nonlinear inductance 2EJ /I 2 that, in contrast
to the small junction case, does not diverge at the critical
current (this is because Ic < JcWL). The largest inductance
value, achieved when the junction is biased at the criti-
cal current Ic = Ic,max = 4I0, is L0 ≡ 2HsG(Ic,max)/I 2

c,max =
E0/I

2
0 = �0/2πI0 = LJ λJ and is the junction natural unit

(typically a fraction of a picohenry) that will be used later on
to normalize inductances. Normalizing the magnetic fluxes
to the magnetic flux quantum �0, then the normalized
circulating current can be written as icir = 2π (n − φe)/lloop,
where φe ≡ �e/�0 and lloop ≡ Lloop/L0. With such notations,
lb ≡ Lb/L0 = 
b�.

Neglecting the mutual inductance effects, the system total
energy Etot consists of two independent contributions, Etot =
Em + HsG; the former is the magnetostatic energy Em stored
in the inductances L1 and L2, 2Em = L1I

2
1 + L2I

2
2 , the latter

FIG. 5. Numerically computed zero-field normalized junction
energy ĤsG vs ι2 of a symmetric (2α
b = 1) in-line Josephson
tunnel junctions with for different normalized lengths �. For � → ∞,
the analytical expression in Eq. (23) was plotted. ι ≡ I/I0 is the
normalized bias current.
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is the previously discussed junction energy HsG, which, as
said before, takes into account both Josephson energies and
the magnetic energy associated with the bias current I flowing
in the junction electrodes. In terms of normalized quantities,
considering that I1 = αI − Icir and I2 = −(1 − α)I − Icir, we
have that Êm ≡ Em/E0 is

Êm = [α2l1 + (1 − α)2l2]
ι2

2

+ [(1 − α)l2 − αl1]ιicir + (l1 + l2)
i2
cir

2
. (24)

Êm is minimum for α = αmin, where

αmin = l2

l1 + l2
+ icir

ι
= l2

lloop − lb
+ icir

ι
,

with ι 
= 0. In passing, we observe that, in the absence of
circulating currents, αmin is independent of ι. Moreover, in
many cases of practical interest, Êm � 8 � ĤsG so that the
junction energy can be neglected.

D. Magnetic diffraction patterns

Setting hl and hr at their extreme values ±2 in Eq. (15),
we obtain the magnetic diffraction pattern (MDP) ic(he) in the
Meissner regime as a function of the symmetry parameter α:

ic(he) = 2 + he

α
b

for − 2 � he � hmax,

ic(he) = 2 − he

1 − α
b

for hmax � he � 2, (25)

with hmax ≡ 2(2α
b − 1) being the field value which, for a
given α, yields the maximum critical current ic(hmax) = 4.
This ic value can be achieved only when, as depicted in Fig. 4,
hr = −hl = 2. The hmax expression turns out to be very useful
in the experiments to determine the product α
b from the
analysis of the junction MDP:

2α
b = 1 ± hmax

2
= 1 ± Hmax

Hc

, (26)

in which the plus sign has to be chosen when hmax is
negative (2α
b < 1) and vice versa. Figures 6(a)–6(c) display
the MDPs for different values of the symmetry parameter
0 � α � 1 and for three 
b values, namely, 0.25, 0.5, and

0.75. As already stated, in general, he results from the sum of
two contributions, namely, happ and hrad. However, here, we are
neglecting the contribution to φe (and hence to hrad) deriving
from the current It running in the top junction electrode;
in the experiments, when needed, this contribution can be
compensated by an external field perpendicular to the loop
plane.

We remark that the ic(he) patterns are piecewise linear
and, in general, they have two quite different absolute slopes
|dic/dhe| on the left and right branches. The wide range of
linearity is very attractive for the realization of cryogenic
magnetic sensors with a large dynamic range especially
because large slopes can be achieved in the [−2,hmax] interval.
If the in-plane modulating field He is the radial field Hrad

induced by a persistent current Icir circulating in the bottom
doubly connected electrode, then He = Hrad = 
bIcir/W. It is
then possible to define a current gain38,39 gi ≡ |dIc/dIcir| =
|dic/dicir| = 
b|dic/dhrad| = 
b|dic/dhe|, with icir ≡ Icir/I0

and hrad ≡ Hrad/JcλJ = 
bicir; that is,

gi = 1

α
for − 2 � he � hmax,

gi = 
b

1 − α
b

for hmax � he � 2. (27)

In zero external field, varying α in the range [0,1], we have
current gains in the range [
b,
b/
t ]. Since in all real
samples Wt < Wb, in the case of electrodes having the same
effective penetration depth λ, then 
t > 
b, suggesting that,
for a given α, it is preferable to realize the loop with the top
electrode, rather than with the bottom one; this can also be
inferred by comparing Figs. 6(a) and 6(c). Further, according
to Eq. (27), large current gains can be achieved with small-α
samples by flux biasing the loop to have he < hmax.

For each trapped fluxoid, the currents circulating around the
loop change by an amount 	Icir = �0/Lloop corresponding to
a jump in the critical current:

	Ic = gi	Icir = gi�0

Lloop
. (28)

Each trapped flux quantum results in a small but detectable
change in the junction critical current Ic. It becomes therefore
possible to readout the number n of flux quanta trapped in a
superconducting loop by means of an in-line LJTJ. It is worth

FIG. 6. Magnetic diffraction patterns ic(he) for a very long in-line Josephson junction with different values of the symmetry parameter
0 � α � 1 and for three 
b values, namely, 0.25, 0.5, and 0.75. The critical current is normalized to JcWλJ and the magnetic field to JcλJ .
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to stress that the presented findings constitute an improvement
in the state-of-the-art of current or magnetic sensors.40

E. Fluxoid quantization

The internal magnetic flux �i within the loop is the sum
of externally applied flux �e and the self-flux, �s ≡ LloopIcir,
produced by the shielding current Icir, which circulates around
the loop to restore the initial flux:

�i = �e + LloopIcir.

Also �e results from the sum of two contributions:

�e = �a + �t = μ0HZAeff + Lt

∫ L/2

−L/2
It (X)dX. (29)

The first term is the applied or geometrical flux �a due
to the uniform magnetic field HZ externally applied in
the direction perpendicular to the loop plane and Aeff

is the effective flux capture area of the loop. For narrow loops,
the pick-up areas can be well approximated by their inner
areas. The second term, �t , is the nonlinear flux contribution
due to the nonuniform current It flowing in the junction top
electrode. Further, the reaction flux, �s , can be also expressed
in terms of the currents in three inductive paths of the loop,
L1, L2 and Lb:

�s = L1I1 + L2I2 + �b

= (L1 + L2)(αI − Icir) − L2I + Lb

∫ L/2

−L/2
Ib(X)dX, (30)

where �b is the nonlinear flux contribution due to the currents
It flowing in the junction bottom electrodes.

In the presence of an external magnetic field Happ, applied
in the loop plane and perpendicular to the long junction
dimension L, by using Eqs. (12) and (13), after some simple
algebra we end up with

�b


b

= LtL(αI − Icir) − �0
	φ

2π
+ �′, (31)

�t


t

= LbL(αI − Icir) + �0
	φ

2π
− �′ (32)

with, as before, 	φ ≡ ∫ L/2
−L/2 φX(X)dX = φ(L/2) − φ(−L/2)

being the Josephson phase difference across the junction and
�′ ≡ μ0deLHapp a factitious flux threading the LJTJ barrier.

The single-valuedness of the phase of the superconduct-
ing wave function around the loop (fluxoid quantization)
requires41

�i = �a + (L1 + L2)(αI − Icir) − L2I + �J = n�0 (33)

in which n is an integer number, called the winding number,
corresponding to the number of flux quanta trapped in the
ring and �J = �t + �b is the nonlinear contribution to the
internal flux due to the currents It and Ib flowing in the junction
electrodes:

�J = Lt

∫ L/2

−L/2
It (X)dX + Lb

∫ L/2

−L/2
Ib(X)dX

=2
t
bLLJ (αI−Icir)+(
t−
b)

(
�0

2π
	φ−�′

)
. (34)

Inserting the expression Eq. (34) for �J into Eq. (33) and
switching to normalized units, the fluxoid quantization law
reads

	
	φ = (l2 − αlloop)ι + lb	
(αι − icir) + 2π	
φ′,
(35)

where 	
 ≡ 
t − 
b. By its definition, |	
| < 1. If the
material, quality, and thickness of the junction base and top
films are similar, then λt 	 λb and, consequently, the expres-
sion for 	
 reduces to 	
 	 (Wb − Wt )/(Wb + Wt ) � 0. If

t = 
t , then, for symmetry reasons, the nonlinearity of the
Josephson element does not play any role, as far as concerns
the fluxoid quantization and we find that, as expected, α is
given by the ratio

α0 ≡ L2

Lloop
= l2

lloop
. (36)

It is interesting to observe that the same result is obtained
by minimizing the magnetic energy Êm in Eq. (24), if l1 were
replaced by l1 + lb = lloop − l2. In other words, for 	
 = 0,
both the fluxoid quantization and the energy minimization
carry the same information, although they are independent
principles. Equation (35) is the reason why in our analysis
we need to distinguish Lb from Lt so that, in general, the
fluxoid quantization imposes a constraint on the Josephson
phase difference 	φ across the junction. Provided 	
 
= 0,
Eq. (35) can be rearranged as

	φ = 	
−1lloop(α0 − α)ι + 
b�(αι − icir) + 2πφ′. (37)

The fluxoid quantization leaves the parameter α as a still
unknown quantity that has to be determined by using the
energy minimization principle. Since the system total energy
Etot is the sum of two contributions, it might have more than
one local minimum corresponding to states with different
critical current Ic. We remark that the fluxoid quantization
and the energy minimization are independent principles and
as such they must be satisfied simultaneously. Summarizing,
the analysis of a LJTJ having a doubly connected electrode
requires the self-consistent solution of the differential equation
in Eq. (14) with the boundary conditions Eq. (15), the
constraint Eq. (37), and the further requirement of energy
minimization with respect to the parameter α that will depend
on the system parameters ι,happ,hrad,l2,l1,lb,
b and can be
considered as a system degree of freedom. This complex task
cannot be carried out analytically and, in general, one should
use rather involved numerical methods.

The bond imposed by Eq. (37) frustrates the Josephson
phase φ(x) along the junction. As far as ι � 4, φ(x) can
adapt its profile to the constraint. However, increasing ι one
reaches a point when no phase profile is compatible with
the corresponding bond and a premature switching occurs.
The capacity of handling the phase frustration grows with the
normalized length of the junction. Ultimately, in the system
under investigation, the fluxoid quantization results in a phase
frustration which, in turn, reduces the junction critical current.
With a fixed phase difference, dynamic processes such as the
resonant fluxon motion5 cannot exist any longer; nevertheless,
flux flow processes will survive and their stability could even
be enhanced by a fixed 	φ.
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For the double loop devices, α and β can be considered
as two degrees of freedom for the system and we shall
have to apply two fluxoid quantization rules that act as a
double constraint on the phase difference 	φ at the junction
extremities. This is equivalent to fix the phases φ(−�/2) and
φ(�/2) at the junction extremities. As shown in Fig. 4(c),
the peaks of the supercurrent density are not at the edges
of the junction but are positioned where is needed to maximize
the total current. Therefore a LJTJ can carry a net supercurrent
despite the boundary phase coercions; however, in this case,
only internal dynamic processes, such as the resonant plasma
oscillations, will be allowed. The two quantization rules
together with the energy minimization condition allow to
determine both α and β. However, with two loops, the
system total energy should also include the mutual magnetic
interaction. We postpone the thorough analysis of such devices
to a future work.

F. Remarks

In our model of window-type LJTJs we have neglected the
thickness of the oxide layer, which is correct as far as we
deal with the tunneling region. A more realistic picture of real
devices should consider that in the idle region surrounding
the tunnel area the insulation between the bottom and top
electrode is provided by an oxide layer typically made of a
deposited SiOx layer and/or a anodic oxide. The total thickness
of this layer is comparable or even larger than the electrode
penetration depths λb,t (and might also be comparable with
the strip width). In Ref. 26, each electrode was modeled as
a parallel combination of two stripes having quite different
oxide thicknesses resulting in a rather involved expression
of the effective magnetic thickness. The expression of d ′

e

proposed in Eq. (6) should therefore be considered as just
a first approximation that needs to be refined. Both magneto-
static simulations and/or properly devised experiments could
improve our knowledge on this topic.

In this section, the consequences of the fluxoid quantization
were derived for an LJTJ built on a narrow superconducting
loop and the resulting phase constraint in Eq. (37) also contains
a term proportional to the junction normalized length �.
However, it is not clear which junction length maximizes
(or minimizes) the effects of phase frustration. Further, our
results cannot be extrapolated to the limit of small junctions
which are not affected by self-field effects, i.e., hr = hl . In
previous (not published) experiments, no evidence of the
fluxoid quantization was observed in the magnetic diffraction
patterns of small Josephson junctions built on large inductance
loops lb � lloop. Nevertheless, we expect a different behavior
in the limit lb 	 lloop, that is, when the junction energy
dominates the loop energy.

III. EXPERIMENTS

A. Experimental setup

Our setup consisted of a cryoprobe inserted vertically in
a commercial LHe dewar (T = 4.2 K). The cryoprobe was
magnetically shielded by means of two concentric Pb cans
and a cryoperm one; in addition, the measurements were
carried out in an rf-shielded room. The external magnetic field

FIG. 7. Geometrical layouts (not to scale) of our samples: (a)
rectangular and (b) circular loop. The semiangular length of the
junction is δ ≈ 1.

could be applied both in the chip plane or in the orthogonal
direction. In fact, the chip was positioned in the center of
a long superconducting cylindrical solenoid whose axis was
along the Y direction [see Fig. 2(a)] to provide an in-plane
magnetic field Happ = HY . A transverse magnetic field HZ

was applied by means of a superconducting cylindrical coil
with its axis oriented along the Z direction; this transverse
field induces a controllable shielding current Icir circulating
in the superconducting loop that, in turn, generates a radial
field, Hrad, in the insulating layer of the Josephson structure
that algebraically adds to Happ. The field-to-current ratio was
3.9 μT/mA for the solenoid and 4.4 μT/mA for the coil.
These values have been numerically obtained from COMSOL

multiphysics42 magnetostatic simulations in order to take into
account the strong correction to the free-space solution due
to the presence of the close fitting superconducting shield.43

The effects of a transverse field on the static properties of
both short44 and long45 Josephson tunnel junctions of various
geometries have recently been investigated.

B. Samples

In Figs. 7(a) and 7(b), we report the two (topologically
equivalent) geometrical configurations used for our experi-
ments; the rectangular loop in Fig. 7(a) has a mean perimeter
approximately equal to 2π times the mean radius R = 53 μm
of the ring-shaped loop in Fig. 7(b). Since the semiangular
length δ ≡ L/2R ≈ 1, to a first approximation, the curvature
of the junction built on top of the ring can be ignored. In both
cases, each loop allocates two in-line junctions sharing the
doubly connected base electrode; they can be biased separately
and under different bias configurations corresponding to
different L2/Lloop ratios, i.e., α0 values. In addition, if the bias
current is applied through their respective counter electrodes
(terminals 1 and 4 in Fig. 7), the two junctions are series biased.
Here, we will only present experimental data on single loop
devices with just a single junction biased; the common biasing
of both junctions has been intended for a different class of
experiments aimed to improve the results of Ref. 5 and will be
the subject of future work.

To correctly analyze our geometrical configurations, we
have to introduce one more path inductance corresponding
to the loop section acting as the base electrode for the
passive LJTJ. Furthermore, if both junctions were biased
simultaneously, the fluxoid quantization would involve the
phase differences across both junctions and the total system
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energy would include the two junction’s energies as well.
However, if only one of the junctions is biased, then the model
developed for the single loop can be fully adapted with the
caveat that properly calculated contributions have to be added
to the inductive paths L1 and/or L2.

We evaluated the loop inductances considering the loops as
isolated superconducting narrow loops: the results are 90 and
240 pH for the rectangular and circular loops, respectively.
However, these are overestimated values, since the portions
of the loop covered by the counter electrode have a lower
inductance per unit length. The experimental data will provide
more accurate values.

In the experiments, we used high quality Nb/Al-Alox/Nb
LJTJs fabricated on silicon substrates using the trilayer tech-
nique in which the Josephson junction is realized in a window
opened in a 200-nm-thick SiO2 insulator layer. We measured a
large number of junctions with width W = 1.5 μm and length
L = 100 μm and Josephson current density Jc 	 3.6 kA/cm2,
as measured in small junctions realized in the same fabrication
batch. The two junctions on a given loop only differ by the
longitudinal idle regions, which are 50 μm for JJA and JJC
and 1 μm for JJB and JJD. The nominal thicknesses and
widths of the bottom and top electrodes were, respectively,
db = 100 nm, Wb = 6 μm, dt = 350 nm, and Wt = 4 μm,
so that, assuming46 λL,Nb = 90 nm, it is λb = 45 nm, λt =
85 nm, and the effective magnetic penetration d ′

e, as given
in Eq. (6), resulted to be d ′

e ≈ 43 nm. The same values in
Eq. (7) give 
b = 1 − 
t ≈ 0.26 corresponding to Lt ≈ 3Lb

and 	
 ≈ 0.48. The value of d ′
e, together with the critical

current density given above, yields λJ 	 12.7 μm; henceforth,
our junctions had a nominal normalized length L/λJ 	 7.9
and we can treat them as long (L > 2πλJ ) one-dimensional
(W < λj ) Josephson tunnel junctions. (By assuming that the
magnetic penetration was de = λb + λt ≈ 130 nm, we would
get λJ 	 7.3 μm and 
b = λb/de = 1 − 
t ≈ 0.35.)

C. Magnetic diffraction patterns

On real samples, the measurement of the maximum su-
percurrent versus the external field yields the envelop of the
lobes, i.e., the current distribution switches automatically to the
mode which, for a given field, carries the largest supercurrent.
Sometimes, for a given applied field, multiple solutions are
observed on a statistical basis by sweeping many times the
junction current-voltage characteristic. Figures 8(a)–8(b)
display, respectively, the in-plane and transverse MDPs for
an LJTJ built on top of a rectangular loop under different bias
configuration (resulting in different L1/L2 ratios). Qualita-
tively similar results (not reported) were obtained for samples
with annular geometry. In both figures, the data labels I, II, and
III indicate that the junction bias current was applied through,
respectively, the terminals 1 and 2, 1 and 3, and 1 and 5.
We remark that, as expected, all the MDPs are symmetric
with respect to inversion of both the junction bias current Ic

and the applied magnetic fields, HY or HZ . In Figs. 8(a)–
8(b), I0 = 460 μA, HY,c = 490 A/m, and HZ,c = 80 A/m.
As shown by the dotted line, the critical field values were
obtained by extrapolating to zero the linear branches of the
MDP main lobe (by definition the critical field does not depend
on the bias configuration). The theoretically expected value of

I0 = JcWλJ 	 690 μA exceeds its experimental counterpart
by 50%. Since in the fully asymmetric configuration I, the
self-flux effects are absent (with L2 = α0 = 0, no fraction
of the bias current circulates in L1), at a qualitative level,
we recognize this discrepancy as the signature of the phase
frustration in Eq. (37) provided by the fluxoid quantization. Put
in a different way, the presumed harmless fact to have a doubly
connected electrode depresses the critical current with about
35%. Unfortunately, even in absence of external fields and with
the winding number n set to zero, no analytical expression can
be found for the value of I0 expected in presence of the doubly
connected electrode.

Further, the expected value of the in-plane critical field,
Happ,c ≡ 2Jcλj 	 915 A/m is almost twice as large as the
measured HY,c; this discrepancy can be ascribed to the
previously mentioned in-plane demagnetization that, in the
barrier proximity, squeezes the field lines of any magnetic field
applied in the junction plane. Interestingly, good agreement
was found instead for the transverse critical field HZ,c, which
makes us confident about demagnetization effects for the
in-plane fields. In fact, according to Eq. (11), the radial field
experienced by a LJTJ built on a superconducting loop is

Hrad = 
bIcir

W
≈ μ0
bAeffHZ

WLloop
(38)

in which LloopIcir ≈ μ0HZAeff is the magnetic flux threading
the loop and Aeff the effective flux capture area of the loop.
By definition, also Hrad,c = 2Jcλj , then Eq. (38) provides the
following expression for the expected transverse critical field,
H th

Z,c:

H th
Z,c = 2JcλjWLloop

μ0
bAeff
.

For narrow loops, as in our cases, the pick-up areas can
be well approximated by their areas; for the rectangular loop
of Fig. 8(a), Aeff ≈ 4.5 × 10−3 mm2. By inserting the correct
values in the last equation, we get H th

Z,c ≈ 84A/m. According
to Eq. (11), when HZ = ±HZ,c then the shielding current is
Icirc ≈ ±2I0/
b; at variance with the applied supercurrent
I , the circulating currents are not bonded to the [−4I0,4I0]
interval.

FIG. 8. Experimental magnetic diffraction patterns of a long
Josephson tunnel junction built on top of a rectangular loop (sample
JJB) under different bias configurations and applied magnetic field
orientation: (a) in-plane and (b) transverse magnetic field. With
reference to Fig. 7(b), the voltage is measured across the terminals
1 and 2, while the bias current is applied through the contacts: 1
and 2 for curves I, 1 and 3 for curves II, and 1 and 5 for curves III.
I0 = 460 μA, HY,c = 490 A/m, and HZ,c = 80 A/m at T = 4.2 K.
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We note that the experimental in-plane MDPs in Fig. 8(a)
closely reproduce the theoretical ones of Fig. 6(a), apart from
the fact that the largest critical current values Ic,max should be
independent on the biasing terminals. However, the biasing
configuration II and III are characterized by larger and larger
circulating currents, which depress the junction critical current
even further. As already stated, our derivation of the MDPs did
not take into account the self-flux effects. However, we were
able to compensate these effects by a proper small transverse
field HZ .

According to Eq. (26), the product α0
b can be determined
from the field value Hmax corresponding to the largest critical
current Ic,max. We stress that the position of Hmax remains
independent on any possible suppression of the critical current
Ic. Taking the fully asymmetric configuration I as a reference,
α0 = 0 when Hmax = Hc, the obtained values of α0
b for the
biasing configurations II and III are, respectively, 0.11 and
0.21. With 
b ≈ 0.26, we end up with α0 = 0.42 and 0.81,
respectively, for the biasing configurations II and III, reflecting
the fact that, as expected, the configuration II belongs to the
asymmetric range, α < 0.5, while the configuration III belongs
to the symmetric one, α > 0.5. Furthermore, zero-field current
singularities were observed in the junction current-voltage
curves that remind of the resonant fluxon motion; however, due
to the phase torque induced by the fluxoid quantization that
mimic the effect of an external magnetic field, we believe that
they are better ascribed to the asymmetric fluxon propagation
of Fiske-type resonances, observed in LJTJ.47

We can now comment on the transverse MDPs in Fig. 8(b)
in which drastic Ic changes are found but only for negative HZ

values. In this case, the externally induced circulating currents
become increasingly important and, as discussed in the Sec. II,
we have to consider the effects of the energy minimization with
α being a degree of freedom bonded to the [0,1] interval. It
can be shown that, for generic hr,l values, the junction energy
in Eq. (22) is minimum when 2α
 = 1 + 2hrad/ι (we note
that happ = HY = 0 in this situation). For concord hrad and
ι, the parameter α is squeezed to its upper value 1, while
for hrad < −ι/2 it is bounded to zero; however, with the ratio
2hrad/ι ∈ [−1,0], the free parameter α will assume the value(s)
in the range [0,1] that minimize the energy. It is possible that,
for a given hrad (HZ in the experiments), two values of ι (I )
exist that correspond to different junction energy levels. The
coexisting states are evident in the transverse MDPs for for
Hz in the range [−0.5, − 0.25]HZ,c. Therefore we believe
that the sudden changes in Ic(HZ), that are absent in the
in-plane MDPs, correspond to abrupt modifications of the
phase profile φ(x) along the LJTJ and indicate that the energy
minima correspond to quite different α values. Numerical
simulations are planned to understand the experimental MDPs
at a quantitative level. Finally, the appearance of displaced
linear slopes for transverse magnetic fields larger than the
critical value constitutes one more indication that the phase
twist is increasing with the circulating currents, as suggested
by Eq. (37).

D. Signal-to-noise ratio

With our devices, a very large signal-to-noise ratio can be
achieved in the detection of magnetic flux quanta trapped in

FIG. 9. Variation of the critical current as a function of the
magnetic flux with which the loop was field-cooled through the
superconducting transition temperature. HY = HZ = 0 and T =
4.2 K.

the loop. Figure 9 shows how the zero-field critical current
changes of anyone of the two LJTJs on top of the rectangular
loop when the system is cooled through the NS transition in the
presence of a transverse magnetic field which is incremented
by steps corresponding to a small fraction of the magnetic
flux quantum, 	�e = 0.02 �0. Once the transverse field is
removed, the quantized levels of the critical currents with
	Ic ≈ 9.5 μA are clearly visible out of the ±1 μA rms current
noise from the thermal fluctuation of the critical current.

As the MDPs of Fig. 8 indicate, as far as |he| � |hmax|, the
slope of the positive and negative critical currents, respectively,
I+
c and I−

c , is the same. Consequently, any circulating current
Icir modulates I+

c and I−
c concordly, meaning that the offset

current I off
c ≡ I+

c + I−
c changes twice faster. The root mean

square noise of I off
c is

√
2 times larger than that of a single

critical current, meaning that the signal-to-noise ratio is
enhanced by a factor

√
2. In addition to this, since the change

with temperature of I+
c is numerically the same but opposite

to that of I−
c , one more advantage of the current offset, as

compared to just one critical current, is its much reduced
sensitivity to any temperature drift that might occur during
the measurements. The data shown in Fig. 9 refer to I off

c /2.
An accurate value of the loop inductance can be obtained

from Eq. (28):

Lloop = gi�0

	Ic

.

For the rectangular loop with the bias configuration I (gi =
0.33), we find Lloop = 72 pH. For the circular loop with the
same biasing configuration (gi = 0.35), we measured 	Ic =
5.2 μA corresponding to Lloop = 140 pH.

The superposition of the levels is due to the nonadiabaticity
of the thermal transitions6 and the transition from one level to
the next follows a Gaussian probability law.48 In fact, during
the normal-to-superconducting transition, the loop tempera-
ture changed at a rate of 5 × 103 K/s. Indeed, this method is
strongly inspired by the results found in our investigation of
the spontaneous fluxoid formation in superconducting loops
based on the detection of the persistent currents circulating
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around a hole in a superconducting film, when one or more
fluxoids are trapped inside the hole.5

IV. CONCLUSIONS

In this paper, we have revisited the theory of the self-field
effects that characterize the long Josephson tunnel junctions
and made them interesting for the investigation of nonlinear
phenomena. Our analysis goes beyond the previous works in
two ways: (i) it takes into account the different inductances
per unit length of the electrodes forming the junction and (ii) it
provides the boundary conditions for the most general junction
biasing configuration. We applied the theory to the specific
case of long Josephson tunnel junctions with not simply con-
nected electrodes. Apart from their intriguing physical prop-
erties, the interest for LJTJs built on a superconducting loop
stems from the fact that they were successfully used to detect
trapped fluxoids in a cosmological experiment aimed to study
the spontaneous defect production during the fast quenching of
a superconducting loop through its normal-to superconducting
transition temperature.5 We found that the singlevaluedness
of the phase φ1 of the order parameter of the bottom (or top)
superconducting electrode (fluxoid quantization) gives raise to

a variety of unexpected nonlinear phenomena when coupled
to the sine-Gordon equation for the phase difference φ2 − φ1

of the order parameters in the superconductors on each side of
the tunnel barrier. The principle of energy minimization was
also invoked to determine the possible states of the system.
We have focused on static phenomena such as the reduction
of the junction critical current and its dependence on magnetic
fields applied in and out of the loop plane. Nevertheless,
also the dynamic properties, such as the propagation of
nonlinear waves, are expected to be drastically affected by the
doubly connected electrode(s). Our experiments unambigu-
ously corroborate the analytical findings and provide hints
to implement the modeling. Future work should go in the
direction of investigating the consequences of the fluxoid
quantization for small and intermediate length Josephson
tunnel junctions and on the dynamic properties of long
junctions.
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