We have studied a Superconducting Quantum Interference SQUID device made from
a single layer thin film of superconducting silicon. The superconducting layer
is obtained by heavily doping a silicon wafer with boron atoms using the Gas
Immersion Laser Doping (GILD) technique. The SQUID device is composed of two
nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at
low temperature and low magnetic field. The overall behavior shows very good
agreement with numerical simulations based on the Ginzburg-Landau equations.Comment: Published in Applied Physics Letters (August 2015