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1 Introduction

The Ω-deformation [1, 2] has been a topic of intense research in the past years. While

it first appeared in the context of instanton sums [3], it has also received attention from

the topological string community [4–10] and more recently in connection with integrable

systems via the gauge/Bethe correspondence [11–14].

In this paper, we will present a generally applicable formulation of the Ω-deformation

from string theory via a brane construction in the so-called fluxtrap background, as first

presented in [15] and generalized further in [16, 17]. We will demonstrate the versatility of

the fluxtrap approach by connecting to topics discussed in the recent literature, such as the
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(refined) topological string and the so-called Nekrasov-Shatashvili (NS) limit appearing in

the context of the four-dimensional gauge/Bethe correspondence [12]. As we will show,

also the M-theory lift of Ω-deformed theories can be performed in our fluxtrap setup with

relative ease.

As an explicit application, we show how the non-commutative spectral curve of a

quantum integrable system emerges geometrically from the NS gauge theory via a 9-11

flip. A similar non-commutativity also appears in the related limit of the Ω-deformation

corresponding to the topological string [18, 19]. In our case the geometric interpretation

of the quantization is more direct, with the symplectic form on the curve realized as the

pullback of M-theory four-form flux to an M5-brane.

The fluxtrap background [15] is the T-dual of a fluxbrane or Melvin background. This

is an integrable string theory, for it is a free quotient that can be studied with the methods

of [20–25]. Depending on the configuration of branes which is placed in it, the fluxtrap

can give rise to both twisted masses in a two-dimensional gauge theory [15], or an Ω-

deformed four-dimensional gauge theory (which is effectively dimensionally-reduced by the

deformation). The number of ε-parameters by which the gauge theory is deformed is

restricted by the number of available isometries in the undeformed metric. Supersymmetry

moreover imposes a relation on the εi. The case ε1 = −ε2 related to the topological string

and the case ε1 = 0 corresponding to the NS limit are both special limits of the general

construction discussed here.

The plan of the paper is as follows. In section 2, we introduce the construction of the

Nekrasov Ω-deformation of an N = 2 gauge theory as the Melvin compactification of a

(p, q) fivebrane web, whose T-dual description is the flux-trap of [15]; in this section we

also review the fluxtrap construction in its most general formulation on a generic Ricci-

flat space. In section 3, we introduce the brane setups which gives rise to a variety of

Ω-deformed gauge theories. In section 4, the M-theory lift of our brane setup in the

fluxtrap background is discussed. In section 5, we perform a 9-11 flip to realize the non-

commutative spectral curve of the quantum integrable systems associated to topological

strings and gauge theories in the NS limit. Conclusions and outlook are given in section 6.

In appendix A, some supersymmetry conventions which are used throughout the article

are collected, while in appendix B the Taub-Newman-Unti-Tamburino (Taub-NUT) space

is presented in different coordinate systems which become useful in different parts of this

article. While it is possible to deform by complex ε-parameters [16], we restrict ourselves in

this article to ε ∈ R, partly for ease of exposition and partly because it is the more natural

choice under some circumstances. The general set-up for the complex fluxtrap background

is however formally appealing and is presented for completeness in appendix C.

2 Omega-deformation of Seiberg-Witten theory as a fivebrane web in

type IIB Melvin background

We wish to study the Ω-deformation of a general N = 2 gauge theory in four dimensions

that has a realization in the manner of [26], as the low-energy dynamics of a set of NS5

and D4 branes of type IIA string theory, that can be deformed to a stack of M-fivebranes
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wrapped on a Riemann surface in M-theory. The Ω-deformation of a four-dimensional the-

ory does not have a simple, universal description in terms of the four-dimensional dynamics

itself, but can generally be understood most simply by lifting to a five-dimensional super-

symmetric theory on a circle, and then re-compactifying on a circle with certain twisted

boundary conditions [27]. The most direct way to realize the Ω-deformed four-dimensional

gauge theory into string theory, then, is to lift this general prescription to string theory.

This will turn out to be quite straightforward, with the compactification from five to four

dimensions realized as a T-duality of the bulk string theory.

The class of gauge theories in [26] generally have lifts to five-dimensional theories that

can be realized as the dynamics of a web of NS5- and D5-branes [28, 29]. The compactifi-

cation on the S1 produces a four-dimensional gauge theory realized on type IIA NS5- and

D4-branes by the usual T-duality rules that turn a longitudinally compactified D5-brane

into a D4-brane, and a longitudinally compactified NS5-brane into another NS5-brane.

While the T-duality of the branes works out in a completely obvious way, the T-duality

of the bulk itself does not, despite the simplicity of the initial background. The starting

point for our solution is a vacuum Einstein metric, identified by a simultaneous shift in one

direction and a rotation of some other directions (Melvin background). In the case where

the rotated coordinates are flat Minkowski space, these solutions are sometimes referred

to as “fluxbranes” and have long been studied, starting with [30] and continuing into the

modern era [20–24].

We will always be considering identifications of the product of a line with a four-

dimensional base x0,1,2,3 which will either be flat R4 or else a Taub-NUT geometry with

asymptotic radius λ. The first case is a limit of the second as λ→∞, and the distinction

between the two will affect nothing relevant to our consideration. This is because the

supersymmetrically invariant quantities counted by the Nekrasov partition function are

known [31, 32] not to depend on the radius λ as an independent parameter.

The rotational identification of x0,1,2,3 is a rotation in two different planes by an-

gles θ1 and θ2, and the translational identification on the real line is a shift by an amount

R̃. The limit of interest to us is the limit where both R̃→ 0 and θ1,2 → 0 with θ1,2/R̃ ≡ ε1,2
are held fixed. The resulting spacetime, thought of as a fibration of x0,1,2,3 over x̃9 is locally

trivial, but it is not locally trivial when thought of as a fibration of x̃9 over x0,1,2,3. In

a gravitational theory on this spacetime, the local nontriviality of the fibration manifests

itself as a nonzero electromagnetic field strength of the Kaluza-Klein gauge connection.

In the low-energy effective quantum theory of gravity, the limit R̃→ 0 is a singular one:

quantum effects are not under control when R̃ becomes smaller than the scale of new states

and/or nonrenormalizable interactions. When the effective theory is embedded in type IIB

string theory, as is the case for us, the scale of new states and nonrenormalizable interactions

is the string length `s =
√
α′, below which light winding states dominate the spectrum and

the controlled description is in terms of a T-dual theory of branes in type IIA, rather than

type IIB string theory. This T-duality turns the Kaluza-Klein electromagnetic flux into

curvature H of the Neveu-Schwarz B-field, meaning that a noncommutative deformation

of the brane dynamics enters the description as an essential part of the Ω-deformation. We

now give the details of this solution and its description in various dual frames.
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The deformation with general ε-parameters rotates the two complex planes near the

core of the Taub-NUT geometry with arbitrary angles as one traverses the Melvin circle.

Generically, this would by itself break all supersymmetry, so one needs to extend the

deformation by a third rotation of the spacetime that also acts with a nontrivial phase

on spinors. Such a transverse rotational isometry always exists in the cases we consider:

For a generic N = 2 (p, q) fivebrane web preserving eight supercharges, there are three

common transverse directions that rotate into one another under an SO(3) transverse

isometry. This isometry acts as SU(2) on the Killing spinors preserved by the fivebranes

and is thus an exact SU(2) R-symmetry, not only at low energies but exact in the full

ultraviolet-complete string dynamics. We shall return to this point later when we compare

our realization of the Ω-deformed gauge theory with its other well known realization as the

topological string [3, 33].

The background. Let us consider a type IIB background given by a (Euclidean) Ricci-

flat metric of the type ds2 = gij dxi dxj + d(x̃9)2 and a constant dilaton Φ0. The direction

x̃9 = R̃ũ describes a circle of radius R̃ and the metric g has N ≤ 4 (non-compact) rotational

isometries generated by ∂θk . The Melvin identifications on this background are{
ũ ∼ ũ+ 2πnu ,

θk ∼ θk + 2πεkR̃nu ,
nu ∈ Z (2.1)

together with the standard identifications θk ∼ θk + 2πnk for the angular variables. It is

convenient to pass to a set of disentangled variables

φk = θk − εkR̃ũ , (2.2)

which are 2π-periodic. The change of variables modifies the boundary conditions from

(ũ, θk) ∼ (ũ, θk) + 2πnu

(
1, εkR̃

)
+ 2πnk(0, 1) (2.3)

to

(ũ, φk) ∼ (ũ, φk) + 2πnu (1, 0) + 2πnk(0, 1) . (2.4)

T-duality in ũ leads to a background with a non-trivial dilaton and a B-field where all

the relevant degrees of freedom are local fields rather than winding strings. We call this

the fluxtrap background on g:

ds2 = gij dxi dxj +
(dx9)2 − ε2UiUj dxi dxj

1 + ε2‖U‖2
, (2.5a)

B = ε
Ui dxi ∧ dx9

1 + ε2‖U‖2
, (2.5b)

e−Φ =

√
α′ e−Φ0

R

√
1 + ε2‖U‖2 , (2.5c)

where x9 is a circle of radius R = α′/R̃,

U i ∂i=
∑
k

εk
ε
∂φk , (2.6)
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Ui = gijU
j , and the norm is taken in the initial metric:

‖U‖2 ≡ UiU i ≡ U igijU j . (2.7)

In the limit ε → 0 the T-duality is performed on the ũ circle alone and the background

remains undeformed.

The Killing vector U i ∂i generates the rotational isometries for both the initial and the

T-dual metrics. In presence of the fluxtrap the isometry is always bounded, by which we

mean that the generating vector field has bounded norm:1

‖U‖2trap =
‖U‖2

1 + ε2‖U‖2
<

1

ε2
. (2.8)

In this sense ε acts as a regulator for the non-bounded rotational isometry.

If we set Φ0 = log R̃/
√
α′, which we will do for the rest of this article, we find that the

prefactor in the dilaton
√
α′ e−Φ0/R = 1. This will result in the right normalization for the

four-dimensional gauge theories in section 3.

Supersymmetry. The Melvin identifications on non-bounded isometries break in general

all the supersymmetries of the initial Ricci-flat metric. Some of them can be preserved by

imposing conditions on the parameters εk [22].

In an appropriate coordinate system one can write the Killing spinors ηIIB for the

metric gij dxi dxj + (dx̃9)2 in a form that isolates the dependence on the coordinates θk
and ũ:

ηIIB = (1+Γ11)

N∏
k=1

exp[
θk
2

Γρkθk ] (η0 + i η1) , (2.9)

where ρk, θk are the cylindrical coordinates in the plane of the rotation generated by ∂θk
and η0 + i η1 is a spinor which does not depend on either ũ or θk. The Killing spinor is

invariant under θk → θk + 2πnk, but not under the Melvin identifications in eq. (2.3). To

isolate the source of the problem we pass to the disentangled coordinates φk,

ηIIB =

N∏
k=1

exp[
φk
2

Γρkθk ] exp[
R̃ũ

2
εkΓρkθk ]ηw , (2.10)

where ηw = (1+Γ11) (η0 + i η1). While the first term is invariant under φk → φk + 2πnk,

the second one is not invariant under ũ → ũ + 2πnu. In order to respect the boundary

conditions we need to impose
N∑
k=1

εkΓρkθkηw = 0 . (2.11)

This is in general not a projector and all supersymmetries are broken.

Consider now the case N > 1 and impose the condition

N∑
k=1

skεk = 0 , (2.12)

1In equivariant cohomology, the norm ε2‖U‖2 is related to the moment map for the rotation generated

by U .
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where the sk are signs. The boundary conditions become

N∑
k=1

εkΓρkθkηw =
N−1∑
k=1

εk

(
Γρkθk −

sk
sN

ΓρNθN

)
ηw = 0 . (2.13)

What we find is a generic linear combination of N − 1 commuting projectors. It is annihi-

lated by the product of all the corresponding orthogonal projectors

Πflux =
N−1∏
k=1

(
Γρkθk +

sk
sN

ΓρNθN

)
, (2.14)

so that the boundary conditions are satisfied by the Killing spinor

ηIIB = (1+Γ11)
N∏
k=1

exp[
φk
2

Γρkθk ] Πflux ηw . (2.15)

Depending on ηw, the projector Πflux can either break all supersymmetries or preserve some

of them. In the latter case, at least 1/2N−1 of the original ones are preserved.

Since all dependence on ũ has disappeared from the expression, T-duality maps the

Killing spinors ηIIB into local type IIA Killing spinors ηIIA. Using an appropriate vielbein

for the T-dual metric (see appendix A) they take the form ηIIA = ηLIIA + ηRIIA with
ηLIIA = (1+Γ11)

N∏
k=1

exp[
φk
2

Γρkθk ] Πflux η0 ,

ηRIIA = (1−Γ11) Γu

N∏
k=1

exp[
φk
2

Γρkθk ] Πflux η1 ,

(2.16)

where Γu is the gamma matrix in the u direction normalized to unity. It is possible to

write an explicit expression for Γu, in terms of a rotation on the right-moving spinor that

depends on ε. Observe that by construction

Γu =
γ9 + ε /U√
1 + ε2‖U‖2

, (2.17)

where

/U = U ieIIB
a
iγa , (2.18)

and eIIB is the vielbein for the initial Ricci-flat metric. Introducing the angle ϑ as

tan
ϑ

2
= ε‖U‖, (2.19)

the gamma matrix becomes

Γu = cos
ϑ

2
γ9 + sin

ϑ

2

/U

‖U‖
= exp[

ϑ

2

/Uγ9

‖U‖
]γ9 , (2.20)

where we used the fact that {/U, γ9} = 0 and /U
2

= ‖U‖2 1.

In conclusion we see that for generic values of εk all supersymmetries are broken. If the

sum of the εk is zero, some supersymmetries can be preserved. If this is the case, a minimum

of 1/2N−1 of the original supersymmetries are present in the fluxtrap background.
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3 D-branes and Omega-deformations of gauge theories

After having introduced the fluxbrane background in the bulk, we will now study D-brane

constructions in this background. Gauge theories encoding the fluctuations of D-branes

placed into a fluxtrap background receive deformations from it. The precise nature of the

deformation depends on the type of brane and the way it is placed into the background.

D2-branes suspended between NS5-branes which are not extended along the planes of

rotation for example receive twisted mass deformations [15]. In this article, we will be

concerned with D4-branes which are extended in the directions of (some of) the rotations.

This leads to an Ω-deformation of the resulting gauge theory. Depending on whether one

or two planes of rotation lie in the worldvolume of the D4-branes, we reproduce either the

general case ε1 6= ε2, or special limits such as the ε1 = −ε2 limit which is related to the

topological string, or the limit ε1 = 0, also known as the Nekrasov-Shatashvili limit.

3.1 General ε1 6= ε2 case

Closed strings. Consider the general construction introduced in the last section for the

simplest case of flat space and identifications in three planes. Now U is the Killing vector

corresponding to the rotations in the (x0, x1), (x2, x3) and (x4, x5) planes,

ε U = ε1
(
x0 ∂1−x1 ∂0

)
+ ε2

(
x2 ∂3−x3 ∂2

)
+ ε3

(
x4 ∂5−x5 ∂4

)
, (3.1)

and the fluxtrap background takes the form

ds2 = dx2
0...8 +

(dx9)2 −
(
ε1ρ

2
1 dφ1 + ε2ρ

2
2 dφ2 + ε3ρ

2
3 dφ3

)2
1 + ε21ρ

2
1 + ε22ρ

2
2 + ε23ρ

2
3

, (3.2a)

B =

(
ε1ρ

2
1 dφ1 + ε2ρ

2
2 dφ2 + ε3ρ

2
3 dφ3

)
∧ dx9

1 + ε21ρ
2
1 + ε22ρ

2
2 + ε23ρ

2
3

, (3.2b)

e−Φ =
√

1 + ε21ρ
2
1 + ε22ρ

2
2 + ε23ρ

2
3 . (3.2c)

In order to preserve some supersymmetry we impose

ε1 + ε2 + ε3 = 0 , (3.3)

and using the general prescription introduced in the previous section it is immediate to see

that the background preserves 32/22 = 8 supercharges. The Killing spinors are{
ηLIIA = (1+Γ11) exp[φ12 γ01] exp[φ22 γ23] exp[φ32 γ45] (γ01 + γ23) (γ23 + γ45) η0 ,

ηRIIA = (1−Γ11) Γu exp[φ12 γ01] exp[φ22 γ23] exp[φ32 γ45] (γ01 + γ23) (γ23 + γ45) η1 ,
(3.4)

where

Γu =
γ1ε1ρ1 + γ7ε2ρ2 + γ5ε3ρ3 + γ9√

1 + ε21ρ
2
1 + ε22ρ

2
2 + ε23ρ

2
3

, (3.5)

η0 and η1 are constant real spinors (each of the two projectors (γij + γkl) reduces super-

symmetry by 1/2), and

ρ1 eiφ1 = x0 + ix1 , ρ2 eiφ2 = x2 + ix3 , ρ3 eiφ3 = x4 + ix5 . (3.6)
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x 0 1 2 3 4 5 6 7 8 9

fluxbrane ε1 ε2 ε3 × × × ◦
NS5 × × × × × ×
D4 × × × × ×
ξ 0 1 2 3 4 v

Table 1. D4-branes suspended between NS5s with two independent ε. The crosses × indicate

directions in which the branes are extended. The circle ◦ is the direction of the T-duality. The

effective gauge theory describing the D4-brane is the Ω-deformed four-dimensional gauge system of

Nekrasov. Remarkable limits are obtained for ε3 = 0 (topological strings) and ε1 = 0 (the so-called

NS limit). Note that all directions have the same Euclidean signature.

Open strings. We want to study the embedding of a D4-brane extended between two

NS5-branes in our background. The NS5s are extended in the directions 012389, the D4

in 01236, which means that it is finite in the x6 direction). The Dirac-Born-Infeld (DBI)

action describes the fluctuations of the D4 in the directions x8 and x9, which we collect in

a complex field v.

Consider the static embedding defined by

f : ξ0 = x0, ξ1 = x1, ξ2 = x2, ξ3 = x3, ξ4 = x6, v = x8 + ix9 = v(ξ0, ξ1, ξ2, ξ3).

(3.7)

The Dirac-Born-Infeld action is given by

S = −µp
∫

d5ξ e−Φ
√
−det(ĝ + B̂ + 2πα′F ) , (3.8)

with µp = (2π)−p (α′)−(p+1)/2. It is convenient to introduce the pullback of the vector

field U ,

ε Û = εf∗U = εÛ i ∂ξi= ε1
(
ξ0∂1 − ξ1∂0

)
+ ε2

(
ξ2∂3 − ξ3∂2

)
. (3.9)

Expanding the square root of the determinant at second order in the fields, we can write

the Lagrangian as

Lε1,ε2 =
1

4g2
4

[
1 + FijF

ij +
1

2

(
∂iϕ+ i εÛkFki

)
δij
(
∂jϕ̄− i εÛ lFlj

)
− ε2

8

(
Û i∂i(ϕ+ ϕ̄)

)2
]
,

(3.10)

where we introduced the field ϕ = v/(πα′) and used the definition of the gauge coupling

for the p-brane effective action g2
p = (2π)p−2 (α′)(p−3)/2. The indices are raised and lowered

with the (undeformed) flat metric and repeated indices are summed over. In a more

compact notation, the action can also be written as a sum of squares,

Lε1,ε2 =
1

4g2
4

(
1 + ‖F‖2 +

1

2
‖ dϕ+ i ε ıÛF‖

2 +
ε2

8
‖ıÛ d(ϕ+ ϕ̄)‖2

)
, (3.11)

where ı is the interior product and

‖V ‖2 = V ∧ ∗V̄ . (3.12)

– 8 –
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This is the form of the action for the Ω-background that was discussed in [12, 27]. Since Û

depends explicitly on all the coordinates on the D4-brane, Poincaré invariance is completely

broken and the system is effectively zero-dimensional, but preserves two supersymmetries.

Some of the contributions to the brane action come from the B-field, some from the

bulk dilaton and metric. Let us point out the latter first, as they are larger at small

deformation, and additionally they are odd under a certain discrete symmetry.

B-field couplings. The cross terms with a single gauge field strength and a single scalar

gradient are odd under the charge conjugation symmetry Aµ → −Aµ. This symmetry

is the same symmetry under which the bulk Neveu-Schwarz B-field is odd, and indeed

these terms in the brane action are induced by the first-order couplings in the DBI

action to Bµν . These terms are leading order in the deformation parameter(s) ε.

Dilaton and metric deformation. These deformations are of order ε2 and smaller, and in-

variant under all global symmetries (other than the Poincaré group). These terms

control the classical properties of gauge field configurations, such as instanton and

multi-instanton configurations and thus contribute directly to the deformation of the

integrand on instanton moduli spaces.

It is instructive to see how the deformation lifts the zero modes of e.g. the one-

instanton solution. We can see this from two complementary points of view: the string-

theoretic description of the instanton as a D–instanton in the presence of a D3-brane;

and the field-theoretic description of the instanton as a low-energy object described as a

gauge-field profile.

At the string theoretic level, a single pointlike D–instanton couples only to the dila-

ton, not to the metric and B-field. The coupling to the latter two comes only through

the fundamental D3–D(−1) strings, whose condensation comprises a nonzero size for the

instanton. But the dilaton couples to the D(−1)–brane at any size, as one can see from

the full DBI action for the D–instanton:

SD(−1) = 2π exp[−Φ] . (3.13)

The only critical point for the translational zero mode of the pointlike D–instanton is thus

a critical point of the dilaton profile Φ(x). In the fluxtrap solution (3.2c), the only critical

point of Φ is the fixed point ρi = 0 of the U(1) action rotating the complex coordinates

of C2. The localization of the integral over instanton moduli space at fixed points of the

U(1) action is implemented simply by the effective potential induced by the dilaton.

Without referring directly to the string-theoretic origin of the action (3.10), we still in-

fer the effective potential for a small instanton from the spatial dependence of the quadratic

action for the gauge connection. Intuitively, an instanton should seek the maximum of the

gauge coupling, since its action goes as g−2
4 . For an action such as the one in eq. (3.10), that

is not Lorentz-invariant, there is not a uniquely defined “gauge coupling”, since the tensor

defining the gauge kinetic term is not diagonal. However a sufficiently small instanton —

smaller than the typical scale of variation ε−1 of the couplings — is a spherically symmetric
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pointlike object, and cannot sense the symmetry breaking. Therefore it can only couple to

the trace of the gauge kinetic tensor, which in our case is

Tr (gauge kinetic tensor) =
1

g2
4

(
1 + 1

2ε
2‖U‖2

)
≡ 1

g2
4,scalar

, (3.14)

which upon comparison with the string solution in eq. (2.5) does in fact turn out to equal

g−2
4 exp[−Φ], up to terms of order O(ε4‖U‖4).

3.2 The ε1 = −ε2 limit

Closed strings. Let us now consider the case of two identifications in flat space by taking

the limit ε3 = 0 in the expressions in eq. (3.2). Now U is the Killing vector corresponding

to the rotations in the (x0, x1) and (x2, x3) planes,

ε U = ε1
(
x0 ∂1−x1 ∂0

)
+ ε2

(
x2 ∂3−x3 ∂2

)
, (3.15)

and the background reads

ds2 = dx2
0...8 +

(dx9)2 −
(
ε1ρ

2
1 dφ1 + ε2ρ

2
2 dφ2

)2
1 + ε21ρ

2
1 + ε22ρ

2
2

, (3.16a)

B =

(
ε1ρ

2
1 dφ1 + ε2ρ

2
2 dφ2

)
∧ dx9

1 + ε21ρ
2
1 + ε22ρ

2
2

, (3.16b)

e−Φ =
√

1 + ε21ρ
2
1 + ε22ρ

2
2 . (3.16c)

In order to preserve supersymmetry we impose

ε1 = −ε2 = ε , (3.17)

and we obtain 32/2 = 16 supercharges corresponding to the following Killing spinors:{
ηLIIA = (1+Γ11) exp[φ12 γ01] exp[φ22 γ23] exp[φ32 γ45] (γ01 + γ23) η0 ,

ηRIIA = (1−Γ11) Γu exp[φ12 γ01] exp[φ22 γ23] exp[φ32 γ45] (γ01 + γ23) η1 ,
(3.18)

where η0 and η1 are constant real spinors and

x0 + ix1 = ρ1 eiφ1 , x2 + ix3 = ρ2 eiφ2 . (3.19)

This is the fluxtrap background introduced in [15].

Open strings. If we introduce an NS5–D4 system as in the previous case (see table 1),

we obtain a configuration that preserves four supersymmetries. The action is formally the

same as in eq. (3.10), but this time the pullback of the Killing vector U is

Û = f∗U = ξ0∂1 − ξ1∂0 − ξ2∂3 + ξ3∂2 . (3.20)

Poincaré invariance is completely broken also in this case, but the system has four super-

charges.
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The instanton partition function for this four-dimensional theory is identified with the

field theory limit of the topological string partition function with coupling gtop ∝ ε [3, 33].

In this context ε is the coupling of the graviphoton field in the gauge theory obtained by

reducing M-theory on the Melvin circle [34]. The resulting Ramond-Ramond type IIA

background provides in this sense a different realization of the Ω-deformation [35]. A more

detailed discussion of the relationship between our construction and topological strings is

presented in section 4.3.

3.3 The Nekrasov-Shatashvili limit ε1 = 0

Another remarkable limit of the bulk fields in eq. (3.2), is given by ε1 = 0. This time we

impose ε = ε2 = −ε3 and the resulting background has 32/2 = 16 supercharges.

Once more we look at the effective theory for a D4-brane suspended between two NS5-

branes as in table 1. The configuration preserves four supercharges. The DBI action is still

formally the same:

Lε =
1

4g2
4

[
1 + FijF

ij +
1

2

(
∂iϕ+ i εÛkFki

)
δij
(
∂jϕ̄− i εÛ lFlj

)
− ε2

8

(
Û i∂i(ϕ+ ϕ̄)

)2
]
,

(3.21)

where the pullback of the vector U is

Û = f∗U = −ξ3 ∂2+ξ2 ∂3 . (3.22)

In this case, the Poincaré invariance is only broken in the directions ξ2 and ξ3 and the

system is effectively an N = (2, 2) two-dimensional gauge theory. This is precisely the

action discussed by Nekrasov and Shatashvili in [12].

This type of four dimensional gauge theory is related to the quantization of integrable

models [10, 12]. Starting from a four-dimensional N = 2 Seiberg-Witten (SW) gauge

theory subjected to the Ω-background with ε1 = 0 discussed in this section, one obtains

N = 2 super-Poincaré invariance in two dimensions. The crucial observation of [12] is

that the two-dimensional twisted superpotential derived from the prepotential in the four-

dimensional theory can be identified with the Yang-Yang counting function of a quantum

integrable system. The supersymmetric vacua are mapped to the eigenstates of a quantum

integrable system whose Planck constant is given by the deformation parameter ε2 = ~.

For ε2 → 0 one recovers the classical integrable system whose spectral curve is given by

the SW curve.

We will show in the following (section 5.2) that Neveu-Schwarz B-field resulting from

the Melvin deformation of our background geometry give rise precisely to the type of non-

commutativity of the spectral curve that one expects from the corresponding quantum

integrable model.

4 M-theory lift

The theories that we are discussing can be understood in terms of deformations of four-

dimensional N = 2 SW theories. It is natural to describe them in an M-theory setting,

– 11 –



J
H
E
P
0
7
(
2
0
1
2
)
0
6
1

following [26]. In this section we will show how the fluxtrap construction lifts to eleven

dimensions and how the Ω-deformation affects the dynamics of the M5-branes that realize

the gauge theory.

4.1 The bulk

A type IIA background with metric g, Neveu-Schwarz field B, dilaton Φ, one-form C1 and

three-form C3 is oxidized on a circle x10 to M-theory with metric G and three-form A3 as

follows [36]:

GIJ dxI dxJ = e−2Φ/3gij dxi dxj + e4Φ/3
(
dx10 +A1

)2
, (4.1)

C3 = A3 +B ∧ dx10 . (4.2)

Starting from the type IIA background in eq. (2.5) we find the general form of the M-theory

fluxtrap background :

GIJ dxI dxJ =
(
1 + ε2‖U‖2

)1/3 [
gij dxi dxj +

(dx9)2 + (dx10)2 − ε2UiUj dxi dxj

1 + ε2‖U‖2

]
,

(4.3a)

C3 = ε
Ui dxi ∧ dx9 ∧ dx10

1 + ε2‖U‖2
. (4.3b)

It is interesting to remark that the directions x9 and x10 which have completely different

origins (x9 is the dual of the Melvin circle while x10 is the M-circle) enter the background

in a completely symmetric fashion.

In the following we will study the embedding of an M5-brane in this background. For

this purpose it is interesting to consider the physics close to the center of the fluxtrap, i.e.

the limit ε2‖U‖2 � 1. The fields become

GIJ dxI dxJ = gij dxi dxj + (dx9)2 + (dx10)2 +O(ε2‖U‖2) , (4.4a)

C3 = ε Ui dxi ∧ dx9 ∧ dx10 +O(ε3‖U‖3) . (4.4b)

The appropriate setting to discuss the gauge theories found in the previous section is

obtained by starting from a flat metric gij = δij . In this case, at this order the metric is

flat and there is a constant four-form flux F4 = dA3,

GIJ = δIJ +O(ε2‖U‖2) , (4.5a)

F4 = 2 ε ω ∧ dx9 ∧ dx10 +O(ε3‖U‖3) , (4.5b)

where ω is the linear combination of the volume forms of the planes in which the original

Melvin identifications have been performed,

d[ε Ui dxi] = 2ε ω ≡ 2

N∑
k=1

εkωk . (4.6)

Note that ω is the graviphoton field strength in [3].
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x 0 1 2 3 4 5 6 7 8 9 10

fluxbrane ε1 ε2 ε3 × × × ◦ ◦
NS5 × × × × × ×
D4 × × × × × ×
ξ u w Re(s) v Im(s)

Table 2. The embedding of the M5-branes resulting from the lift of the NS5 and D4 in section 3.

The directions x9 and x10 enter symmetrically in the background. The bottom line contains the

complex coordinates used for the description.

4.2 M5-brane embedding

Having constructed the M-theory background we are now ready to study the embedding of

M5-branes. It is known that a configuration of D4-branes suspended between NS5-branes

in flat space as in table 1 lifts to a single M5-brane wrapped on a Riemann surface [26].

We want to see how the presence of the fluxbrane modifies this picture.

The simplest approach consists in looking for the most general M5-brane preserving the

same supersymmetries as the NS5–D4 system [37]. The Bogomol’nyi-Prasad-Sommerfield

(BPS) condition can be expressed in terms of a projector [38],

ΠM5
+ = 1

2

(
1+ΓM5

)
ηM = 0 , (4.7)

where ηM is the generic Killing spinor preserved by the background and ΓM5 is

ΓM5 =

(
−1+

1

3
Γ̂m1m2m3hm1m2m3

)
Γ(0) , Γ(0) =

1

6!
√
−ĝ

ηm1...m6Γ̂m1...m6 , (4.8)

and Γ̂ and ĝ are respectively the pullbacks of the gamma matrices and the metric to the

brane.2 The other degrees of freedom of the M5-brane are represented by a selfdual three-

form h,

h = ∗h , (4.9)

which is related in a non-linear way to the pullback of the bulk four-form flux F4, viz.

dĤ [3] = −1

4
f∗F4 , (4.10)

Ĥ [3]
mnp = m q

m m r
n hpqr , m n

m = δ n
m − 2hmpqh

npq . (4.11)

2The embedding is defined by a map

f : M5→ bulk ,

ζm 7→ xI(ζm) .

For a given vielbein eM
A
I for the bulk metric we define

êA = f∗eM
A = êAm dζm = eM

A
I ∂mx

I dζm ,

and the pullbacks ĝ and Γ̂ are given by

ĝ = f∗g = ĝmn dζm dζn = GIJ ∂mx
I ∂nx

J dζm dζn = êaêBδAB ,

Γ̂m = γAê
A
m = γAeM

A
I ∂mx

I ,

where γA are the flat gamma matrices in eleven dimensions.
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Since we want to describe the lift of the generic Ω-deformed four-dimensional theory

with ε1 6= ε2 we start from the type IIA background in eq. (3.2) and lift it to eleven

dimensions as in eq. (4.3). In our conventions the eleven-dimensional Killing spinors ηM

are related to the ten-dimensional ones ηIIA by

ηM = e−Φ/6ηIIA , (4.12)

where Φ is the type IIA dilaton in eq. (3.2c) and ηIIA are the Killing spinors in eq. (3.4)

(see appendix A).

As a first step let us find the supersymmetries preserved separately by the lifts of the

NS5 and D4-branes (see table 2).

The NS5–brane is lifted to an M5-brane extended in (x0, . . . , x3, x8, x9). The pullback of

the four-form flux vanishes f∗NS5F4 = 0 and the kappa symmetry projector is

ΠNS5
+ = 1

2 (1+γ012389) ; (4.13)

The D4–brane is lifted to an M5-brane extended in (x0, . . . , x3, x6, x10). Also in this case

the pullback of the four-form flux vanishes, but we need to take into account the

deformed metric. The result is that the kappa symmetry projector reads

ΠD4
+ =

1

2

1+
γ026 (γ13 + ε1 |u| γ39 + ε2 |w| γ19) γ10√

1 + ε21 |u|
2 + ε22 |w|

2

 , (4.14)

where u = x0 + ix1 and w = x2 + ix3.

The kappa symmetry projectors for the NS5 and D4 commute,[
ΠNS5

+ ,ΠD4
+

]
= 0 , (4.15)

and each breaks half of the supersymmetries. As already observed in section 3.1 we are

looking for embeddings preserving one sixteenth of the thirty-two Killing spinors of elev-

en-dimensional supergravity (one quarter from the ε-deformation in the bulk and one half

for each brane).

It is convenient to introduce complex coordinates in the bulk,{
v = x8 + ix9 ,

s = x6 + ix10 ,
(4.16)

and make the following ansatz for the embedding of the lifted NS5–D4 system:

fM5 : (u, z, w) 7→


x0 + ix1 = u ,

x2 + ix3 = w ,

s = s(z, z̄) ,

v = v(z, z̄) ,

(4.17)
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where (u,w, z) are complex local coordinates on the brane.

Since we are interested in the physics in a neighborhood of the fluxtrap we can expand

in powers of ε. The embedding expanded at linear order is{
s(z, z̄) = s0(z, z̄) + ε s1(z, z̄) + . . .

v(z, z̄) = v0(z, z̄) + ε v1(z, z̄) + . . .
(4.18)

For ε = 0 we are back to the standard configuration of flat space without four-form flux.

In this case the BPS condition to solve is

ΠM5
+ ΠNS5

− ΠD4
− ηM = 0 . (4.19)

This is satisfied if both s0 and v0 are holomorphic functions of z,{
s0 = s0(z) ,

v0 = v0(z) .
(4.20)

In other words, the M5-brane is wrapped on a Riemann surface Σ in the C2 plane generated

by s and v.

At first order in ε we want to discuss the embedding{
s(z, z̄) = s0(z) + ε s1(z, z̄) + . . .

v(z, z̄) = v0(z) + ε v1(z, z̄) + . . .
(4.21)

in the background of eq. (4.5). The four-form flux has a non-vanishing pullback on the

brane coming from the (1, 1) component in the s, v plane:

f∗M5F4 =
i

4

(
∂̄s̄0 ∂v0 − ∂s ∂̄v̄0

)
dz ∧ dz̄ ∧ (ε1 du ∧ dū+ ε2 dw ∧ dw̄) . (4.22)

Note that the pullback only depends on the embedding at the next-lowest order in ε. The

expression can be suggestively recast in the form

f∗M5F4 = ε ωΣ ∧ (f∗M5ω) , (4.23)

where ω is again the weighted sum over the planes of the Melvin identifications and ωΣ is

the volume form of the Riemann surface Σ with Kähler potential

K(z, z̄) =
1

8
Im(v0(z)s̄0(z̄)) . (4.24)

The corresponding metric and volume form are:

ds2 = 4 ∂∂̄K(z, z̄) dz dz̄ , ωΣ =
∂̄s̄0 ∂v0 − ∂s0 ∂̄v̄0

2
dz ∧ dz̄ = 8 i ∂∂̄K dz ∧ dz̄ . (4.25)

Since f∗M5F4 has only first-order terms in ε, the selfdual three-form h on the brane

obeys a simple linear condition,

dh = −1

4
f∗M5F4 . (4.26)
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Self-duality naturally breaks h into two pieces:3

h =
1

2

(
(ε2 − ε1) ∂K(z, z̄) dz ∧ (du ∧ dū− dw ∧ dw̄)

+ (ε2 + ε1) ∂̄K(z, z̄) dz̄ ∧ (du ∧ dū+ dw ∧ dw̄)
)
, (4.27)

and is more conveniently written in terms of ε± = ε2 ± ε1:

h = − i
(
ε− ∂K dz ∧ (f∗M5ω−) + ε+ ∂̄K dz̄ ∧ (f∗M5ω+)

)
. (4.28)

Having found h, one can now evaluate explicitly

ΓM5
O(ε) =

(
−1+1

3hm1m2m3Γ̂m1m2m3

)
Γ(0) , (4.29)

and impose the kappa symmetry projection

ΠM5
+ ΠNS5

− ΠD4
− ηM = 0 , (4.30)

which is greatly simplified by the fact that the contribution of the h field is projected out

by supersymmetry

hm1m2m3Γ̂m1m2m3Γ(0) ΠNS5
− ΠD4

− ≡ 0 . (4.31)

This means that we are back to(
1−Γ(0)

)
ΠNS5
− ΠD4

− ηM = 0 , (4.32)

which is precisely the same equation as in the ε = 0 case and is satisfied by the same

Cauchy-Riemann conditions {
s1 = s1(z) ,

v1 = v1(z) .
(4.33)

At this order, the embedding is thus still a Riemann surface, but this time a non-vanishing

self-dual three-form flux is turned on on the M5-brane.

At first order in ε, the (2, 0) theory on the worldvolume of the M5-brane can still

be decomposed into a product of a four dimensional part M4 and a Riemann surface Σ.

Turning on the Ω-deformation on M4 automatically gives rise to a flux on the whole M5-

brane. In particular, the flux has also non-vanishing components on Σ, where it acts as a

Kähler form.

It is an important task for the future to extend the above treatment to quadratic order

in ε at which instanton localization takes place as we have seen in section 3.1. It is likely

that beyond linear order, the surface Σ may no longer be holomorphic.

3Algebraically this corresponds to the identification so(4) ' su(2) ⊕ su(2) under which ε1 and ε2 are

mapped to ε+ and ε−.

– 16 –



J
H
E
P
0
7
(
2
0
1
2
)
0
6
1

4.3 Relationship with the topological string

Much has been said about the relationship of the topological string to the Ω-deforma-

tion of gauge theory (e.g. [19, 33, 39]). By realizing the four-dimensional gauge theory

as the dynamics of a geometrically engineered Calabi-Yau singularity in type IIA string

theory, the gauge theory can be lifted to a five-dimensional theory living on the same

singularity in M-theory, and then re-compactified with Melvin boundary conditions to

yield an Ω-deformed gauge theory in four dimensions, which is ultraviolet-completed to the

topological string on the Calabi-Yau singularity. Here, the topological string coupling gtop

is directly proportional to the parameter ε = ε1 = −ε2 of the Melvin twist. This logic has

been verified quantitatively in a number of examples [33].

It is interesting to compare our solution to the topological string realization of the same

deformation of the same N = 2 gauge theory. We have realized the Ω-deformed N = 2

gauge dynamics as the dynamics of a (p, q) fivebrane web [28] compactified on a circle with

Melvin boundary conditions; the topological string realizes the deformed gauge theory via

the same construction, except with the replacement of the (p, q) fivebrane web with a local

Calabi-Yau geometry in eleven-dimensional M-theory as the origin of the five-dimensional

gauge theory.

In our realization, there exists a limit in which all degrees of freedom of the gauge the-

ory are realized as open strings on D–branes living in a spacetime with only Neveu-Schwarz

background fields turned on; this makes it possible write an explicit action deformed gauge

theory. In principle, the existence of a well-defined perturbative string realization makes it

possible to include string and five-dimensional Kaluza-Klein corrections to the renormaliz-

able four-dimensional action, if desired.

Prior to reduction on the Melvin circle, the two five-dimensional theories are not the

same and have different properties. In particular, the R-symmetry groups are different in

the two five-dimensional theories, beyond the low-energy level. In the (p, q) fivebrane web,

as noted earlier, there is an exact SU(2) R-symmetry rotating three common transverse

coordinates to all the branes. In the non-compact Calabi-Yau singularities of interest for

the study of the topological string, the R-symmetry is generically only a U(1).

Both our construction and that of the topological string can be followed through a set

of mutually equivalent dual frames, among which in each case is an M-theory solution with

M5-branes and four-form flux. In this last description, the R-symmetry of the solution

representing the topological string is enhanced from U(1) to SU(2) as a third noncompact

transverse direction decompactifies. This description realizes the gauge theory degrees of

freedom as coming from the six-dimensional (0, 2) superconformal theory on a Riemann

surface as in [26], deformed by the presence of four-form M-theory flux with various numbers

of components longitudinal and transverse to the M5-branes. In both cases, the four-form

flux is proportional to the parameter ε deforming the gauge theory. In the limit ε → 0,

both the M5-brane dual frame of our construction and the M5-brane dual frame of the

topological string theory are of exactly the same type: a set of fivebranes wrapping a

Riemann surface in a flat eleven-dimensional background.
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At leading order in ε level the deformations are subtly different. In particular, the

type of four-form flux differs between the two solutions. In both configurations, the flux is

written as the product of two-forms (see eq. (4.5) and e.g. equation (3.19) of [19]):

F4 = ωR4 ∧ ωC2 . (4.34)

In both cases, the first factor is the same self-dual harmonic form describing the effec-

tive graviphoton flux in the directions x0,1,2,3 = R4 (or Taub-NUT). The second factor

x6,8,9,10 = C2 has a complex structure with respect to which the Riemann surface is em-

bedded holomorphically. With respect to that complex structure, the flux ωC2 in [19]

has Hodge numbers (2, 0) and (0, 2) only, and consequently has vanishing integral on the

Riemann surface. In the solutions presented here, the flux ωC2 has a component with

Hodge numbers (1, 1) and generically has a nonzero integral along the Riemann surface

(see eq. (4.23)).

The two types of flux deformation induce the same term in the deformation of the

gauge theory action at order O(ε), except with a different linear combination of the scalars

appearing. In the NS5/D4 construction with weak gs, the D4-branes are parallel segments

pointing in the x6 direction between NS5-branes, with a gauge group and adjoint degrees of

freedom living on the stack of parallel branes in the segment between each pair of adjacent

NS5’s. Our Ω-deformation of the background (3.2) affects each set of gauge and adjoint

degrees of freedom in the same way, proportionally to the inverse gauge coupling of each

gauge group: from (3.10) we see that at small ε the deformation contributes

∆L =
ε

4g2
4

Ûk Tr
(
Fki∇iIm(ϕ)

)
+O(ε2) . (4.35)

The Ω-deformation implemented by four-form flux in the M5-brane duality frame of

the topological string induces a term of a similar form, through a different orientation of

the flux on the same type of Riemann surface. The four-form flux deformation there (see

e.g. [19]) is proportional to

∆F4 ∝ ωTN ∧ ds ∧ dv + c.c. , (4.36)

where ωTN is the U(1)-invariant two-form on the Taub-NUT space (see equation (5.22)).

Reducing on x10 = Im(s) to type IIA, the M-theory four-form flux contributes to the

NS/NS three-form flux as ∆H ∝ ωTN∧dx9, and to the Ramond-Ramond four-form flux as

∆F IIA
4 ∝ ωTN ∧ dx6 ∧ dx8 . (4.37)

The NS flux contributes to the brane action exactly a term proportional to (4.35). Through

the Chern-Simons term on the D4-branes, the Ramond-Ramond flux induces a coupling

∆SD4 = i

∫
ωTN ∧ dx6 ∧ Tr(dx8 ∧A) , (4.38)

where A is the gauge connection on the D4-brane. As a four-dimensional action, this

generates a term proportional to L5 = g2
4/g

2
5:

∆S4d 3
i

g2
4

∫
ωTN ∧ Tr(dx8 ∧A) . (4.39)
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Integrating by parts and exploiting the fact in the case ε2 = −ε1 that

ωTN = ∗ωTN ∝ d(Ui dxi) , (4.40)

we have

∆L 3 1

g2
4

Û i Tr(∇k(x8) ∗Fik) , (4.41)

which we see is also proportional to (4.35), except involving the scalar Re(ϕ) ∝ Re(v) = x8

instead of Im(ϕ) ∝ Im(v) = x9, and the dual gauge field. It is not yet known whether

our string embedding of the Nekrasov partition function agrees with the topological string

beyond the renormalizable level. If so, it is tempting to think that our embedding may

be related directly by some duality to the topological string. Whatever the duality, it

cannot be a duality that is realized as geometric in eleven dimensions, since the flux along

the Riemann surface is a geometric invariant. It is possible that the duality of [40] be-

tween five-dimensional theories on Calabi-Yau singularities and five-dimensional theories

on (p, q) fivebrane webs may point towards the correct relationship, after compactification

on a circle with Melvin-Nekrasov boundary conditions.

5 9/11 flip and non-commutativity

An equivalent realization for the gauge theory in the Ω-background is obtained when com-

pactifying the M-theory description on the circular orbits of the isometry ∂φ. This will lead

naturally to a non-commutative structure which has already been associated to topological

strings and the Ω-deformation in the NS limit [12, 18, 19]. While work has been done to

develop a SW map directly in M-theory (see e.g. [41]), we choose here to go the route of

performing the usual SW map in type IIA string theory after a 9-11 flip.

In this section, we will not start out from a flat geometry, but from a Taub-NUT space,

resulting in a Taub-trap geometry. As already noted this is equivalent from the point of

view of the quantities counted by Nekrasov’s partition function. On the other hand, it

is convenient in this situation because a Q-centered Taub-NUT space corresponds to Q

coincident D6-branes in flat space in the right duality frame and our argument is most

straightforward in the presence of a D–brane with B-field. Moreover, the supersymmetry

generators remain unchanged since this geometry preserves the very same supersymmetries

as the fluxtrap in flat space (which is recovered as the r → 0 limit of the Taub-trap).

Finally, in the limit r →∞ this background is a string theory realization of the alternative

description of the Ω-background proposed by Nekrasov and Witten [39].

5.1 The ε1 = −ε2 limit

As a first example let us consider a fluxtrap on a space of the form TNQ×S1×R5. It is con-

venient to choose a coordinate system such that the initial metric (prior to identifications)

is written as

gij dxi dxj = V (r) dr2 +
1

V (r)
(dθ +Q cosω dψ)2 + dx2

4...8 + (dx̃9)2 , (5.1)

– 19 –



J
H
E
P
0
7
(
2
0
1
2
)
0
6
1

where

dr2 = dr2 + r2 dω2 + r2 sin2 ω dψ2 , (5.2)

and

V (r) =
1

λ2
+
Q

r
. (5.3)

As shown in appendix B, applying the following shifts to the Killing vector ∂θ corresponds

to the case ε1 = −ε2 = ε:{
ũ ' ũ+ 2πnu ,

θ ' θ + 4πR̃ εnu .
nu ∈ Z (5.4)

Introducing the disentangled variable φ = θ − 2R̃εũ, we see that in this case,

U i ∂i = ∂φ , Ui dxi =
dφ+Q cosω dψ

V (r)
, ‖U‖2 =

1

V (r)
. (5.5)

Note that in this case ∂θ is a bounded isometry,

‖U‖2 =
1

V (r)
< λ2 , (5.6)

which means that the fluxbrane does not break any additional supersymmetries.4

Using the formula in eq. (2.5) we find that the Taub-trap background is given by

ds2 = V (r) dr2 +
1

V (r) + ε2
(dφ+Q cosω dψ)2 +

V (r)

V (r) + ε2
(dx9)2 + dx2

4...8 , (5.7a)

B =
ε

V (r) + ε2
(dφ+Q cosω dψ) ∧ dx9 , (5.7b)

e−Φ =

√
1 +

ε2

V (r)
. (5.7c)

The corresponding Killing spinors can be found by using the general prescription of sec-

tion 2 and the expression for the Killing spinors of the undeformed Taub-NUT in eq. (B.11).

As expected, we find that the fluxtrap does not break supersymmetry since the correspond-

ing projector is the same that appears in the undeformed Taub-NUT. More explicitly, the

Taub-trap background preserves a total of sixteen supersymmetries:{
ηLIIA = (1+Γ11) exp[ω2 γ01] exp[ψ2 γ23] (γ01 + γ23) η0 ,

ηRIIA = (1−Γ11) Γu exp[ω2 γ01] exp[ψ2 γ23] (γ01 + γ23) η1 ,
(5.8)

where

Γu =
−εγ3 +

√
V (r)γ9√

ε2 + V (r)
. (5.9)
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undeformed

Taub-NUT

Taub-trap

r
θ

φ = θ − 2R̃εũ

R4

fluxtrap

R3 × S1

R3 × S1 × S1 plus

constant B field

Figure 1. The Taub-NUT interpolates between R4 and R3×S1, while the corresponding Taub-trap

interpolates between the fluxtrap in flat space (tip of the cigar) and R3 × S1 with a constant B

field.

Adding a D4-brane wrapped on the Taub-NUT and bounded by two NS5s in x6 preserves

the Killing spinors that satisfy

ηLIIA = ΓD4η
R
IIA , (5.10)

where ΓD4 is the pullback of γm1...m5 onto the D4. In other words, the four preserved

supersymmetry generators are given by

ηε = ηLIIA + ηRIIA = (1+ΓD4) ηRIIA = (1+ΓD4) Γuη
R
IIB =

√
V (r) + εγ39√
ε2 + V (r)

ηε=0 . (5.11)

In this sense the Ω-deformation can be understood as a rotation in the (x3, x9) plane by

the angle

tan
ϑ

2
=

ε√
V (r)

(5.12)

that acts on the spinors as

ηε = exp[
ϑ

2
γ39]ηε=0 . (5.13)

The Taub-trap interpolates between two remarkable backgrounds:

• For r → 0, the potential is V (r) ∼ Q/r and the solution becomes

ds2 =
Q

r
dr2 +

r

Q+ ε2r
(dφ+Q cosω dψ)2 +

Q

Q+ ε2r
(dx9)2 + dx2

4...8 , (5.14a)

B =
εr

Q+ ε2r
(dφ+Q cosω dψ) ∧ dx9 , (5.14b)

e−Φ =

√
1 +

ε2r

Q
. (5.14c)

4The fluxtrap construction on the isometry ∂φ is natural in these coordinates because it uses the same

U(1) fibration of the Taub-NUT seen as a hyperkähler quotient.
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After the changes of variables
r = Q

(
ρ2

1 + ρ2
2

)
,

ω = 2 arctan ρ2
ρ1
,

φ = Q (θ2 − θ1) ,

ψ = θ1 + θ2 ,

and

{
x0 + ix1 = ρ1 ei θ1 ,

x6 + ix7 = ρ2 ei θ2 ,
(5.15)

this is precisely the fluxtrap in flat space of eq. (3.16).

• For r →∞, the potential is V (r) ∼ 1/λ2 and the background is given by

ds2 =
dr2

λ2
+

λ2

1 + ε2λ2
dφ2 +

(dx9)2

1 + ε2λ2
+ dx2

4...8 , (5.16a)

B =
ελ2

1 + ε2λ2
dφ ∧ dx9 , (5.16b)

e−Φ =
√

1 + ε2λ2 . (5.16c)

This is flat space (to be precise R8×T 2) with a constant B field. Supersymmetry is re-

stored, in the sense that in this limit there are thirty-two supercharges corresponding

to the following Killing spinors:
ηLIIA = (1+Γ11) η0 ,

ηRIIA =
1+ελγ39√

1 + ε2λ2
(1−Γ11) γ9η1 ,

(5.17)

which means that the Ω-deformation acts on the supersymmetry generators for the

theory of a D4-brane as a rotation:

ηε = exp[
ϑ

2
γ39]ηε=0 , (5.18)

where

tan
ϑ

2
= ελ . (5.19)

The Taub-NUT geometry interpolates between R4 for r → 0 and R3 × S1 for r → ∞
where the S1 is a circle of radius λ described by θ. Adding a fluxtrap we obtain the Taub-

trap background that interpolates between the flat fluxtrap and flat space with a constant

B field. This is not surprising because in the large-r limit the identifications are done on

a decoupled S1 and the fluxtrap is realized by T-duality on a torus with shear (generated

by (u, φ)) which results in a constant Neveu-Schwarz field (see figure 1). In this sense our

construction relates the usual field-theory interpretation of the Ω-deformation recovered in

section 3 (r → 0) and the alternative description of [39] (r → ∞). In the latter limit, the

T-dual background in eq. (5.16) captures directly the deformations of metric and coupling

constant and explains the non-trivial transformations of the observables.

T-duality on a torus with shear is also the first clue for the non-commutativity that we

expect based on the observations in [18] and [12]. In order to turn this clue into a precise
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statement, valid for finite values of ε and for all values of r, we need to pass to an equivalent

string-theoretical description of the fluxtrap. As a first step we lift it to M-theory:

ds2 =

(
1 +

ε2

V (r)

)1/3 [
V (r) dr2 +

(dφ+Q cosω dψ)
2

+ V (r)
(
(dx9)2 + (dx10)2

)
V (r) + ε2

+ dx2
4...8

]
(5.20a)

C3 =
ε

V (r) + ε2
(dφ+Q cosω dψ) ∧ dx9 ∧ dx10 . (5.20b)

This picture becomes particularly clear in the ε → 0 limit. The metric is TNQ × R7 and

the four-form flux is

F4 = ε ωTN ∧ dx9 ∧ dx10 , (5.21)

where ωTN is the unique two-form on the Taub-NUT that is invariant under the triholo-

morphic U(1) isometry:

ωTN = d

[
dφ+Q cosω dψ

V (r)

]
. (5.22)

There are three natural circles that can be used to reduce the M-theory background to

type IIA. Reducing on x10 leads back to the fluxbrane on Taub-NUT. The same happens

when reducing on x9, as already observed in the previous section. The third alternative

consists in reducing along φ. The resulting bulk contains a one-form and a three-form:

ds2 = V (r)1/2 dr2 + V (r)−1/2

[
dx2

4...8 +
(dx9)2 + (dx10)2

1 + ε2‖U‖2

]
=

= V (r)1/2 dr2 + V (r)−1/2

[
dx2

4...8 +
V (r)

V (r) + ε2
(
(dx9)2 + (dx10)2

)]
,

(5.23a)

B =
ε

V (r) (1 + ε2‖U‖2)
dx9 ∧ dx10 =

ε

V (r) + ε2
dx9 ∧ dx10 , (5.23b)

e−Φ = V (r)3/4
√

1 + ε2‖U‖2 = V (r)1/4
√
V (r) + ε2 , (5.23c)

A1 = Q cosω dψ , (5.23d)

A3 = B ∧A1 . (5.23e)

This background is the Ω-deformation of the theory of Q D6-branes extended in

(x4, . . . , x10).

An equivalent description is obtained by applying the SW map [42] to the D6-brane

theory in order to turn the B-field into a non-commutativity parameter:(
ĝ + B̂

)−1
= g̃−1 + Θ , (5.24)

where ĝ and B̂ are the pullbacks of metric and B-field on the brane and g̃ is the new

effective metric for a non-commutative space satisfying

[xi, xj ] = i Θij . (5.25)

Applying this map to our case we find that the ε-dependence of the metric is completely

dropped and the B-field is turned into a non-commutativity between x9 and x10:

g̃ij dxi dxj = V (r)−1/2 dx2
4...10 , (5.26)

[x9, x10] = i ε . (5.27)
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Maybe surprisingly, all dependence on ε disappears from the D6-brane theory and is turned

into a constant non-commutativity parameter.5We would like to stress that this is an exact

result, valid for any finite value of ε and r.

At this point, it is interesting to follow the fate of the branes whose dynamics reproduce

the Ω-deformed gauge theory. Start from the configuration of D4/NS5s given in table 1,

where the Taub-NUT space is extended in (x0, . . . , x3). We have seen in the previous

section that in the M-theory lift this configuration turns into a single M5-brane extended

in the directions (x0, . . . , x3) and wrapped on a Riemann surface Σ embedded in the (s, v)

plane. Reduction on φ turns the M5-brane into a D4-brane extended in r and wrapped

on Σ, which is now embedded in the worldvolume of the D6-brane. This is strictly true

in the ε = 0 limit. Our findings above point towards the fact that for finite ε this picture

remains the same, but this time the Riemann surface Σ is embedded in a non-commutative

complex plane where

[s, v] = i ε . (5.28)

As observed in section 3.2, this background is related to topological strings. In this

sense, our picture provides a geometric explanation for the fact that in this context the

Riemann surface behaves as a subspace of a quantum mechanical s, v phase space [18]. Our

setup should be contrasted with the one in [19], where a similar explanation was offered

for the non-commutativity. In this case the authors start from M-theory on TN× X̃ × S1,

with Melvin identifications in the Taub-NUT and apply a sequence of dualities leading

eventually to M5-branes wrapped on a Riemann surface in TN × C2 × R2 × S1 (X̃ is the

mirror of the Calabi-Yau defined by xy + F (s, v) = 0, where F (s, v) = 0 is the Riemann

surface Σ). As already stressed in section 4.3, even though the geometry is the same as

ours for ε → 0, there are important differences. In particular the Melvin construction is

realized on a different circle so that in [19] the F4 flux has no (1, 1) components on the C2

where Σ is embedded and its pullback on the M5-brane vanishes.

5.2 The NS limit and gauge/Bethe correspondence

In this section, we want to study a different fluxtrap background on the same TNQ×S1×R5

space with only a single ε on the Taub-NUT part. This corresponds to taking the NS limit

ε1 = 0 on the D4-brane gauge theory as discussed in section 3.3.

In order to impose the Melvin identifications we need to choose a different coordinate

system for the Taub-NUT space in which its nature as a complex two-dimensional manifold

is manifest (see appendix B for details):

ds2 =
V (ρ)

Q

[
ρ2

1ρ
2
2 (dθ1 + dθ2)2 +

(
ρ2

1 + ρ2
2

) (
dρ2

1 + dρ2
2

)]
+

Q

V (ρ)

[
ρ2

1 dθ1 − ρ2
2 dθ2

ρ2
1 + ρ2

2

]2

+ dρ2
3 + ρ2

3 dθ2
3 + (dx̃9)2 + dx2

6,7,8 , (5.29)

where

V (ρ) =
1

λ2
+

Q

ρ2
1 + ρ2

2

. (5.30)

5Non-commutative gauge theories in Melvin backgrounds have already been discussed in [43], albeit with

a different brane configuration.
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We impose the identifications
ũ ∼ ũ+ 2πnu ,

θ1 ∼ θ1 + ε12πR̃nu ,

θ3 ∼ θ3 + ε32πR̃nu ,

nu ∈ Z (5.31)

where ε1 = −ε3 = ε in order to preserve supersymmetry. We introduce the disentangled

variables 
φ1 = θ1 − ε1R̃ũ ,
φ2 = θ2 ,

φ3 = θ3 − ε3R̃ũ .

(5.32)

The corresponding rotational isometry generator is given by

U i ∂i = ∂φ2− ∂φ3 , (5.33a)

Ui dxi = ρ2
2

[
ρ2

1V (ρ) (dφ1 + dφ2)

Q
+
Q
(
−ρ2

1 dφ1 + ρ2
2 dφ2

)(
ρ2

1 + ρ2
2

)2
V (ρ)

]
− ρ2

3 dφ3 , (5.33b)

‖U‖2 = ρ2
2

[
Qρ2

2(
ρ2

1 + ρ2
2

)2
V (ρ)

+
ρ2

1V (ρ)

Q

]
+ ρ2

3 . (5.33c)

In the ρ→ 0 limit we find

‖U‖2 → ρ2
2 + ρ2

3 , (5.34)

consistently with the fact that the Taub-NUT space is asymptotically R4 and we are back

to the fluxtrap solution in section 3.3.

Now the chosen isometry acts as a linear rotation of a noncompact space, the fluxtrap

breaks some of the supersymmetry and only preserves eight supercharges.6 This can be

verified directly by starting from the expression of the 16 Killing spinors prior to the

identifications:

ηIIB = Γ̃(ρ1ρ2 )γ3 exp[
θ1

2
γ01] exp[

θ2

2
γ23] exp[

θ3

2
γ56] (γ01 + γ23) ηw , (5.35)

where

Γ̃(ρ1ρ2 ) =

√
ρ2√
ρ2

1 + ρ2
2

+ 1

(
ρ1

ρ2 +
√
ρ2

1 + ρ2
2

γ0 − γ2

)
. (5.36)

6The same eight Killing spinors are preserved under the more general identifications
ũ ∼ ũ+ 2πnu ,

θ1 ∼ θ1 + 2πε1R̃nu ,

θ2 ∼ θ1 + 2πε2R̃nu ,

θ3 ∼ θ3 + 2πε3R̃nu ,

nu ∈ Z

with the condition ε1 + ε2 + ε3 = 0.
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Introducing the disentangled variables φk we can isolate the terms that depend explicitly

on ũ and do not satisfy the Melvin boundary conditions:

ηIIB = Γ̃(ρ1ρ2 )γ3 exp[
φ1

2
γ01] exp[

φ2

2
γ23] exp[

φ3

2
γ45] exp[

εR̃ũ

2
(γ01 − γ45)] (γ01 + γ23) ηw .

(5.37)

The ũ-dependent part is projected out via (γ01 + γ45). The final result is that 1/2 of the

supersymmetries are broken and after T-duality the eight Killing spinors are{
ηLIIA = (1+Γ11) Γ(ρ1ρ2 )γ3 exp[φ12 γ01] exp[φ22 γ23] exp[φ32 γ56] (γ01 + γ45) (γ01 + γ23) η0 ,

ηRIIA = (1−Γ11) ΓuΓ(ρ1ρ2 )γ3 exp[φ12 γ01] exp[φ22 γ23] exp[φ32 γ56] (γ01 + γ45) (γ01 + γ23) η1 ,

(5.38)

where Γu is the gamma matrix in the direction of the T-duality.

At this point we can proceed as in the previous section. Write down the type IIA fields

after T-duality and the corresponding M-theory lift which we reduce, this time on φ2. The

final result after the flip can be expressed in terms of two functions:

f1(ρ3) =
√

1 + ε2ρ2
3 , (5.39)

f2(ρ1, ρ2) =
√
V (ρ)

√
‖U‖2 − ρ2

3 . (5.40)

The Neveu-Schwarz sector is given by

ds2 = f1(ρ3)f2(ρ1, ρ2)

[
4V (ρ)1/2

((
ρ2

1 + ρ2
2

) (
dρ2

1 + dρ2
2

)
+

4Q2ρ2
2ρ

2
1 dφ2

1

f2(ρ1, ρ2)2

)

+ V (ρ)−1/2

(
dρ2

3 + dx2
6,7,8 +

ρ2
3 dφ2

3

f1(ρ3)2
+

(dx9)2 + (dx10)2

1 + ε2‖U‖2

)]
,

(5.41a)

B = ε
f2

2 (ρ1, ρ2)

V (ρ) (1 + ε2‖U‖2)
dx9 ∧ dx10 , (5.41b)

e−Φ =
V (ρ)3/4

√
1 + ε2‖U‖2

f1(ρ3)3/2f2(ρ1, ρ2)3/2
. (5.41c)

The structure of the solution is precisely the same as in the previous case, and we can

recognize the terms corresponding to Q D6-branes extended in (ρ3, φ3, x
6, . . . , x10). We can

now apply the SW map. Once more the B-field is traded for a constant non-commutativity

parameter between x9 and x10:

ĝij dxi dxj =
f2(ρ1, ρ2)

V (ρ)1/2

[
f1(ρ3)

(
dρ2

3 + dx2
6,7,8

)
+
ρ2

3 dφ2
3 + (dx9)2 + (dx10)2

f1(ρ3)

]
, (5.42)

[x9, x10] = i ε . (5.43)

Even though the in this case the dependence on ε is not completely dropped from the metric

(which is flat around ρ → 0, where the partition functions are evaluated), remarkably we

still find that the non-commutativity parameter is constant and equal to ε, without need

for approximations.
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The study of the brane dynamics in this background follows closely the discussion in

the previous section. Following the dualities, the D4/NS5 system that corresponds to the

gauge theory in the NS limit described in section 3.3 is lifted to a single M5-brane wrapping

a Riemann surface Σ and is then reduced to a D4-brane wrapped on a Riemann surface

embedded on the D6-brane. After the SW map, this can be understood as a Riemann

surface on a non-commutative two-dimensional manifold satisfying

[s, v] = i ε . (5.44)

This provides a geometrical interpretation for the fact that Ω-deformed four-dimen-

sional gauge theories in the NS limit are associated to quantum integrable models with

~ = ε [12, 44].

6 Conclusions

In this article, we have presented a string theory realization of the Ω-deformation of gauge

theory. Our framework has the virtue of capturing general ε-deformations which include

the various special cases discussed in the literature such as the topological string and

the Nekrasov-Shatashvili limit. It provides moreover a geometric interpretation for the

properties of Ω-deformed gauge theories. Given the stringy nature of the construction, the

methods of string theory are applicable, which in this case are often more powerful and

transparent than their gauge theory equivalents.

T-duality plays a key role in our construction by making the effects of the underlying

Melvin background evident. It is possible to lift the fluxtrap background to M-theory, re-

lating it thus to the famous and elusive (2, 0) gauge theory in six dimensions. The M-theory

lift is also instrumental for the 9-11 flip via which we can connect the fluxtrap background

to non-commutative gauge theory. We find in particular that the Riemann surface Σ on

which the M5-brane is wrapped is now embedded in a non-commutative complex plane

with non-commutativity parameter ε = ~, matching up neatly with the quantum spectral

curve of the integrable system discussed in [12] which also plays a prominent role in topo-

logical string theory. Again, the fluxtrap construction gives a geometrical interpretation

also to the quantum integrable system.

A question that can maybe be attacked from here is whether our string picture can be

used to shed some light also on the AGT conjecture [45]. In one respect this is surely the

case, in that our realization gives an algorithmic construction of the modified couplings

realizing the general Ω-deformation of an N = 2 theory.

In principle these couplings can be inferred on general grounds through considerations

of self-consistency, by requiring the preservation of certain supersymmetries that of gauge

theory dynamics after the deformation, a method used for instance in [46, 47] to derive

the modified geometry of Ω-deformed three-dimensional theories and defect theories. The

application of this abstract method to four-dimensional theories has not yet produced

a derivation for the deformed geometry and twisted couplings corresponding to the Ω-

deformation of general four-dimensional N = 2 gauge theories with general ε-parameters.
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The string solutions written down here allow the deformed couplings to be read off from

the branes’ coupling to the modified spacetime metric and other supergravity background

fields in (2.5), giving a physical realization to the method of [48]. For the gauge and adjoint

degrees of freedom, our solution gives a straightforward prescription for the Ω-deformation

of the action, through the Born-Infeld and Chern-Simons action of the D4-branes on which

the gauge theory degrees of freedom propagate. In particular, for the refined case ε2 6= −ε1
the DBI action generates explicit terms of order higher than |ε|2 that would be at best

cumbersome to deduce abstractly by demanding the preservation of a conserved twisted

supercharge. The deformation of the action of the fundamental and bifundamental degrees

of freedom of the NS5/D4 system, while not manifest in the DBI action, is determined

by open string worldsheet physics in the fluxtrap background; a useful direction would

be to learn to extract those deformed couplings to the deformed closed string fields in

an efficient manner.
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A Supersymmetry conventions

The condition for preserving supersymmetry in eleven-dimensional supergravity is the van-

ishing of the variation of the gravitino Ψ:

δΨm =

[
∇m +

1

288
(Γ m1...m4
m − 8δ m1

m Γm2m3m4)Fm1...m4

]
ηM = 0 , (A.1)

where F4 = dA3 is the flux of the three-form field, and the covariant derivative acts on

spinors as ∇mη = ∂mη + 1
4ω

ab
m γab.

In order to reduce on x10 we write the metric as

ds2
11 = e−2Φ/3ds2

10 + e4Φ/3
(
dx10 +A1

)2
, (A.2)

and the three-form field as

A3 = C3 +B ∧ dx10 . (A.3)
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The vielbein eM is written in terms of the ten-dimensional eIIA as{
eM

a = e−Φ/3eIIA
a for a = 0, . . . , 9;

eM
10 = e2Φ/3

(
dx10 +A1

)
,

(A.4)

and the gravitino is decomposed into a dilatino λ and a ten-dimensional gravitino ψ:{
Ψ10 = 1

3 eΦ/6Γ11λ ,

Ψm = eΦ/6
(
ψm − 1

6Γmλ
)
.

(A.5)

Then the variation δΨm becomes:{
δλ =

[
/∂Φ− 1

12
/HΓ11 − 1

8 eΦ
(
3/F 2Γ11 − 1

12
/G
)]
ηIIA ,

δψm =
[
∇m − 1

8Hmm1m2Γm1m2Γ11 − 1
8 eΦ

(
1
2
/F 2ΓmΓ11 − 1

4!
/GΓm

)]
ηIIA ,

(A.6)

where H = dB, G = dA3−H ∧A1 and the ten-dimensional Killing spinor is related to the

eleven-dimensional one by:

ηIIA = eΦ/6ηM . (A.7)

T-duality in the direction u turns the type IIA background into a type IIB one. In

absence of Ramond-Ramond fields the variation of the type IIB dilatino and gravitino take

the same form as in type IIA. If we choose the type IIA Vielbein as{
eIIB

a
ũ = α′

guu
eIIA

a
u ,

eIIB
a
σ = eIIA

a
σ −

gσu+Bσu
guu

eIIA
m
u for xσ 6= u,

(A.8)

if ηIIA does not depend on u, the type IIB Killing spinor is [15, 16]:

ηIIB = [(1+Γ11) + i Γu (1−Γ11)] ηIIA , (A.9)

where Γu is the gamma matrix in the direction u normalized to one.

B Taub-NUT spaces

Coordinate systems. We use two coordinate systems for the Taub-NUT space. In the

Gibbons-Hawking (GH) system the space is seen as a singular circle fibration over R3 and

in the second (cylindrical) system, the space is seen as a two-dimensional complex manifold.

They are, respectively

ds2 = V (r)
(
dr2 + r2 dω2 + r2 sinω dψ

)
+

1

V (r)
(dθ +Q cosω dψ)2 , V (r) =

1

λ2
+
Q

r

(B.1)

and

ds2 =
V (u)

4Q
du · du +

Q

4V (u)

(
Im(z̄1 dz1 − z̄2 dz2)

|z1|2 + |z2|2

)2

, V (u) =
1

λ2
+

Q√
u2

1 + u2
2 + u2

3

(B.2)
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where

u1 = 2 Re(z1z2) , u2 = 2 Im(z1z2) , u3 = |z1|2 − |z2|2 . (B.3)

In order to find the transformations between the two metrics, it is convenient to introduce

polar coordinates on the complex plane

z1 = ρ1 ei θ1 , z2 = ρ2 ei θ2 , (B.4)

then the metric in eq. (B.2) becomes

ds2 =
V (ρ)

Q

(
ρ2

1ρ
2
2 (dθ1 + dθ2)2 +

(
ρ2

1 + ρ2
2

) (
dρ2

1 + dρ2
2

))
+

Q

V (ρ)

[
ρ2

1 dθ1 − ρ2
2 dθ2

ρ2
1 + ρ2

2

]2

(B.5)

and

V (ρ) =
1

λ2
+

Q

ρ2
1 + ρ2

2

. (B.6)

The coordinates are changed according to:
ρ1 =

√
r cos ω2

ρ2 =
√
r sin ω

2

θ1 = ψ+θ
2

θ2 = ψ−θ
2


r = ρ2

1 + ρ2
2

ω = 2 arctan ρ2
ρ1

θ = θ1 − θ2

ψ = θ1 + θ2 .

(B.7)

From this explicit form it is clear that Melvin identifications in θ1 and θ2 with coefficient

ε1 = −ε2 = ε are equivalent to a single Melvin identification in θ with coefficient ε.

The (near-horizon) limit r → 0 is transparent in the cylindrical coordinate system.

We find that V (ρ) ∼ Q
(
ρ2

1 + ρ2
2

)−1
and the metric becomes the flat metric in cylindrical

coordinates,

ds2 ∼ dρ2
1 + dρ2

2 + ρ2
1 dθ2

1 + ρ2
2 dθ2

2 . (B.8)

The large r limit r →∞ is more clear in the GH coordinates, where we have V (r) ∼ λ−2

and the metric is asymptotically the cartesian product of R3 with a circle or radius λ.

Supersymmetry. Consider a Taub-NUT metric in GH coordinates. Choose the vielbein

eIIB
0 =

√
V (r) dr , eIIB

1 = r
√
V (r) dω ,

eIIB
2 = r sinω

√
V (r) dψ , eIIB

3 =
1√
V (r)

(dθ +Q cosω dψ) .
(B.9)

The Killing spinors solve the equation

∂mη +
1

4
ω ab
m γabη = 0 , (B.10)

and take the form

η = exp[
ω

2
γ01] exp[

ψ

2
γ23] (γ01 + γ23) ηw , (B.11)
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where ηw is constant Weyl spinor. Note the projector (1−γ0123) and the fact that η does

not depend on the fiber direction θ.

In cylindrical coordinates a possible vielbein is:

eIIB
0 =

√(
ρ2

1 + ρ2
2

) V (ρ)

Q
dρ1 , eIIB

1 = ρ1ρ2

√
V (ρ)

Q
(dθ1 + dθ2) ,

eIIB
2 =

√(
ρ2

1 + ρ2
2

) V (ρ)

Q
dρ2 , eIIB

3 =

√
Q
(
ρ2

1 dθ1 − ρ2
2 dθ2

)
2
(
ρ2

1 + ρ2
2

)√
V (ρ)

.

(B.12)

The corresponding Killing spinors read:

η =

√
ρ2√
ρ2

1 + ρ2
2

+ 1

(
ρ1

ρ2 +
√
ρ2

1 + ρ2
2

γ0 − γ2

)
γ3 exp[

θ1

2
γ01] exp[

θ2

2
γ23] (γ01 + γ23) ηw .

(B.13)

Note that η only depends on θ1 + θ2 and ρ2/ρ1. The projector remains the same. This is

not surprising given that the change of coordinates is θ1 + θ2 = ψ and ρ2/ρ1 = tan(ω/2).

C General fluxtrap action for complex epsilon

In this note, we have concentrated on Ω-deformations involving real ε-parameters. The

construction with complex ε is similar to the one in section 2, with the difference that

we now have to perform two T-dualities (in the x8 and x9 directions) with two associated

sets of identifications in the same directions θk, but with two independent deformation

parameters m8,k and m9,k which combine to form the now complex deformation parameter

εk. For the details, we refer the reader to [16].

As in section 3.1, the general action can now be written down. The complex counter-

part of the action in eq. (3.10) is given by

Lε1,ε2 =
1

4g2
4

(
1 + ‖F‖2 +

1

2
‖ dϕ+ εıUF + ε |ε|2 (ıU ıŪF )U‖2

+
|ε|2

8
‖ıŪ dϕ− ıU dϕ̄‖2 +

|ε|2

2
(ıU ıŪF )2 (3 + ‖ε U‖2

) )
, (C.1)

or, in components (double indices are summed over):

Lε1,ε2 =
1

4g2
4

[
1 + FijF

ij

+
1

2

(
∂iϕ+ ε UkFki + ε |ε|2 UkŪ lFklUi

)
δij
(
∂jϕ̄+ ε̄ ŪkFkj − ε̄ |ε|2 UkŪ lFklŪj

)
− 1

8

(
ε̄ Ū i∂iϕ− ε U i∂iϕ̄

)2
+
|ε|4

2

(
UkŪ lFkl

)2 (
3 + |ε|2 U iŪi

) ]
. (C.2)

Here, U is the pullback of the Killing vector as in eq. (3.9), where we have in an abuse of

notation used U for the pullback instead of Û .

These actions contain more terms than the ones in section 3.1. In the special case of

ε1/ε2 ∈ R, corresponding to ıU ıŪF ≡ 0 however, the action simplifies and is formally the

same that we had found for a real ε (which is the same as in [12]).

It should be stressed that all expressions given in the main text of this article are

formally correct in the case of complex ε with ıU ıŪ = 0.
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x 0 1 2 3 4 5 6 7 8 9

fluxbrane ε1 ε2 ε3 × × × ◦
D3 × × × ×
ξ 0 1 2 3 w z ϕ

Table 3. D3 brane realizing the Ω-deformation of N = 4 super-Yang-Mills.

D Omega deformation of N = 4 SYM

Another straightforward generalization of our construction is obtained by removing the

NS5-branes from the setup in section 3 and compactifying the theory in the direction x6.

The effective description for the dynamics of the resulting D3-branes is the Ω-deformed

Lagrangian of N = 4 super Yang-Mills:

L =
1

4g2

[
FijF

ij +
1

2

(
∂iϕ+ V kF i

k + V kV̄ lFklV
i
)(

∂iϕ̄+ V̄ kFki + V̄ kV lFklV̄i

)
+

− 1

8
(V̄ i ∂iϕ− V i ∂iϕ̄)2 +

1

2
(V kV̄ lFkl)

2
(

3 + V kV̄k

)
+

+
1

4

(
δij + V iV̄ j

)
(∂iz ∂j z̄ + c.c.) +

1

4

(
δij + V iV̄ j

)
(∂iw ∂jw̄ + c.c.) +

+
1

2 i

(
ε3V̄

i + ε̄3V
i
)

(w̄ ∂iw − c.c.) +
1

2
|ε3|2ww̄

]
, (D.1)

where V = εÛ = ε1
(
ξ0 ∂1−ξ1 ∂0

)
+ ε2

(
ξ2 ∂3−ξ3 ∂2

)
and the fields w and z describe the

oscillations of the D3-brane respectively in x4 +ix5 and x6 +ix7 (see table 3). The effect of

the deformation on these two fields consists in a modification of the kinetic term. Moreover,

the field w acquires a mass term (much like the twisted mass terms in [15, 16]) and a one-

derivative term, which is allowed by the broken Poincaré invariance. The action and its

properties deserve further study, but this goes beyond the scope of the present work.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun.

Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].

[2] A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution,

hep-th/9801061 [INSPIRE].

[3] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

[4] T.J. Hollowood, A. Iqbal and C. Vafa, Matrix models, geometric engineering and elliptic

genera, JHEP 03 (2008) 069 [hep-th/0310272] [INSPIRE].

[5] A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069

[hep-th/0701156] [INSPIRE].

– 32 –

http://dx.doi.org/10.1007/PL00005525
http://dx.doi.org/10.1007/PL00005525
http://arxiv.org/abs/hep-th/9712241
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712241
http://arxiv.org/abs/hep-th/9801061
http://inspirehep.net/search?p=find+EPRINT+hep-th/9801061
http://arxiv.org/abs/hep-th/0206161
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
http://dx.doi.org/10.1088/1126-6708/2008/03/069
http://arxiv.org/abs/hep-th/0310272
http://inspirehep.net/search?p=find+EPRINT+hep-th/0310272
http://dx.doi.org/10.1088/1126-6708/2009/10/069
http://arxiv.org/abs/hep-th/0701156
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701156


J
H
E
P
0
7
(
2
0
1
2
)
0
6
1

[6] I. Antoniadis, S. Hohenegger, K. Narain and T. Taylor, Deformed topological partition

function and Nekrasov backgrounds, Nucl. Phys. B 838 (2010) 253 [arXiv:1003.2832]

[INSPIRE].

[7] D. Krefl and J. Walcher, Extended holomorphic anomaly in gauge theory, Lett. Math. Phys.

95 (2011) 67 [arXiv:1007.0263] [INSPIRE].

[8] M.-x. Huang and A. Klemm, Direct integration for general Ω backgrounds, arXiv:1009.1126

[INSPIRE].

[9] G. Bonelli, K. Maruyoshi and A. Tanzini, Quantum Hitchin systems via β-deformed matrix

models, arXiv:1104.4016 [INSPIRE].

[10] M. Aganagic, M.C. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum geometry of refined

topological strings, arXiv:1105.0630 [INSPIRE].

[11] N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog.

Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [INSPIRE].

[12] N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional

gauge theories, arXiv:0908.4052 [INSPIRE].

[13] D. Orlando and S. Reffert, Relating gauge theories via gauge/ Bethe correspondence, JHEP

10 (2010) 071 [arXiv:1005.4445] [INSPIRE].

[14] D. Orlando and S. Reffert, The gauge- Bethe correspondence and geometric representation

theory, Lett. Math. Phys. 98 (2011) 289 [arXiv:1011.6120] [INSPIRE].

[15] S. Hellerman, D. Orlando and S. Reffert, String theory of the Ω deformation, JHEP 01

(2012) 148 [arXiv:1106.0279] [INSPIRE].

[16] S. Reffert, General Ω deformations from closed string backgrounds, JHEP 04 (2012) 059

[arXiv:1108.0644] [INSPIRE].

[17] D. Orlando and S. Reffert, Twisted masses and enhanced symmetries: the A&D series, JHEP

02 (2012) 060 [arXiv:1111.4811] [INSPIRE].

[18] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and

integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [INSPIRE].

[19] R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, Supersymmetric gauge theories,

intersecting branes and free fermions, JHEP 02 (2008) 106 [arXiv:0709.4446] [INSPIRE].

[20] A.A. Tseytlin, Melvin solution in string theory, Phys. Lett. B 346 (1995) 55

[hep-th/9411198] [INSPIRE].

[21] A.A. Tseytlin, Closed superstrings in magnetic field: instabilities and supersymmetry

breaking, Nucl. Phys. Proc. Suppl. 49 (1996) 338 [hep-th/9510041] [INSPIRE].

[22] J. Russo and A.A. Tseytlin, Supersymmetric fluxbrane intersections and closed string

tachyons, JHEP 11 (2001) 065 [hep-th/0110107] [INSPIRE].

[23] M. Gutperle and A. Strominger, Fluxbranes in string theory, JHEP 06 (2001) 035

[hep-th/0104136] [INSPIRE].

[24] T. Takayanagi and T. Uesugi, Orbifolds as Melvin geometry, JHEP 12 (2001) 004

[hep-th/0110099] [INSPIRE].

– 33 –

http://dx.doi.org/10.1016/j.nuclphysb.2010.04.021
http://arxiv.org/abs/1003.2832
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.2832
http://dx.doi.org/10.1007/s11005-010-0432-2
http://dx.doi.org/10.1007/s11005-010-0432-2
http://arxiv.org/abs/1007.0263
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0263
http://arxiv.org/abs/1009.1126
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1126
http://arxiv.org/abs/1104.4016
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4016
http://arxiv.org/abs/1105.0630
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0630
http://dx.doi.org/10.1143/PTPS.177.105
http://dx.doi.org/10.1143/PTPS.177.105
http://arxiv.org/abs/0901.4748
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4748
http://arxiv.org/abs/0908.4052
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4052
http://dx.doi.org/10.1007/JHEP10(2010)071
http://dx.doi.org/10.1007/JHEP10(2010)071
http://arxiv.org/abs/1005.4445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4445
http://dx.doi.org/10.1007/s11005-011-0526-5
http://arxiv.org/abs/1011.6120
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6120
http://dx.doi.org/10.1007/JHEP01(2012)148
http://dx.doi.org/10.1007/JHEP01(2012)148
http://arxiv.org/abs/1106.0279
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0279
http://dx.doi.org/10.1007/JHEP04(2012)059
http://arxiv.org/abs/1108.0644
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0644
http://dx.doi.org/10.1007/JHEP02(2012)060
http://dx.doi.org/10.1007/JHEP02(2012)060
http://arxiv.org/abs/1111.4811
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4811
http://dx.doi.org/10.1007/s00220-005-1448-9
http://arxiv.org/abs/hep-th/0312085
http://inspirehep.net/search?p=find+EPRINT+hep-th/0312085
http://dx.doi.org/10.1088/1126-6708/2008/02/106
http://arxiv.org/abs/0709.4446
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.4446
http://dx.doi.org/10.1016/0370-2693(94)01682-3
http://arxiv.org/abs/hep-th/9411198
http://inspirehep.net/search?p=find+EPRINT+hep-th/9411198
http://dx.doi.org/10.1016/0920-5632(96)00354-4
http://arxiv.org/abs/hep-th/9510041
http://inspirehep.net/search?p=find+EPRINT+hep-th/9510041
http://dx.doi.org/10.1088/1126-6708/2001/11/065
http://arxiv.org/abs/hep-th/0110107
http://inspirehep.net/search?p=find+EPRINT+hep-th/0110107
http://dx.doi.org/10.1088/1126-6708/2001/06/035
http://arxiv.org/abs/hep-th/0104136
http://inspirehep.net/search?p=find+EPRINT+hep-th/0104136
http://dx.doi.org/10.1088/1126-6708/2001/12/004
http://arxiv.org/abs/hep-th/0110099
http://inspirehep.net/search?p=find+EPRINT+hep-th/0110099


J
H
E
P
0
7
(
2
0
1
2
)
0
6
1

[25] S. Hellerman and J. Walcher, Worldsheet CFTs for flat monodrofolds, hep-th/0604191

[INSPIRE].

[26] E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500

(1997) 3 [hep-th/9703166] [INSPIRE].

[27] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions,

hep-th/0306238 [INSPIRE].

[28] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories

and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

[29] A. Hanany and A. Zaffaroni, On the realization of chiral four-dimensional gauge theories

using branes, JHEP 05 (1998) 001 [hep-th/9801134] [INSPIRE].

[30] M. Melvin, Pure magnetic and electric geons, Phys. Lett. 8 (1964) 65 [INSPIRE].

[31] D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes,

JHEP 02 (2006) 024 [hep-th/0503217] [INSPIRE].

[32] R. Dijkgraaf, C. Vafa and E. Verlinde, M-theory and a topological string duality,

hep-th/0602087 [INSPIRE].

[33] A. Iqbal and A.-K. Kashani-Poor, Instanton counting and Chern-Simons theory, Adv. Theor.

Math. Phys. 7 (2004) 457 [hep-th/0212279] [INSPIRE].

[34] I. Antoniadis, E. Gava, K. Narain and T. Taylor, Topological amplitudes in string theory,

Nucl. Phys. B 413 (1994) 162 [hep-th/9307158] [INSPIRE].
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