112 research outputs found

    A posteriori

    Full text link

    Dynamic light scattering studies of phase transitions in polymers and gels

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 1994.Includes bibliographical references.by Michal J.P. Orkisz.Ph.D

    Morphology and a proposed model of innervation of the human deltoid muscle: a pilot study

    Get PDF
    Background: The deltoid muscle (DM) plays an essential role in retaining the stability and correct function of the upper limb. The aims of the study were to perform a detailed morphological analysis of the DM including its innervation, structure, attachments and relationship with adjacent structures.Materials and methods: The study was carried out on 17 formalin-fixed cadavericupper limbs. After dissection of the shoulders, the DM was visualised and analysed.The following measurements of the muscle were performed for all cases: width of attachments (acromial, clavicular, spinal), entire width of origin, length of the component parts (acromial, clavicular, and spinal) and length of the arm.Results: In all specimens, a characteristic ‘segmented’ innervation scheme of the DM was observed. The axillary nerve (AN) was always divided into an anterior branch (abAN) and a posterior branch (pbAN). Two variations of the DM innervation were distinguished: variation I, where the clavicular and the acromial parts were innervated by the abAN, while the spinal part was supplied both by abAN (anterior fibres) and by pbAN (posterior fibres), and variation II, in which the spinal part did not have double innervation — the abAN innervation area covered only the acromial and clavicular parts, and the entire spinal part was supplied by pbAN. Both variations had a segmented arrangement of sub-branches reaching individual parts of the DM, which was particularly distinct in the clavicular and acromial parts. Correlations were found between the entire width of the DM originand the length of the arm (p = 0.001), between the length of the acromial part of the DM and the length of the arm (p = 0.003), between the width of the spinal attachment and the length of the spinal part (p = 0.002), and between the width of the spinal attachment and the length of the arm (p = 0.0008).Conclusions: The study confirmed the existence of a characteristic segmented innervation scheme of the DM which corresponds with the segmented morphology of its individual parts. An analysis of the internal structure of the muscle specific architectonics based on the tendon system was also presented

    GAUSSPY+: A fully automated Gaussian decomposition package for emission line spectra

    Get PDF
    Our understanding of the dynamics of the interstellar medium is informed by the study of the detailed velocity structure of emission line observations. One approach to study the velocity structure is to decompose the spectra into individual velocity components; this leads to a description of the data set that is significantly reduced in complexity. However, this decomposition requires full automation lest it become prohibitive for large data sets, such as Galactic plane surveys. We developed GAUSSPY+, a fully automated Gaussian decomposition package that can be applied to emission line data sets, especially large surveys of HI and isotopologues of CO. We built our package upon the existing GAUSSPY algorithm and significantly improved its performance for noisy data. New functionalities of GAUSSPY+ include: (i) automated preparatory steps, such as an accurate noise estimation, which can also be used as stand-alone applications; (ii) an improved fitting routine; (iii) an automated spatial refitting routine that can add spatial coherence to the decomposition results by refitting spectra based on neighbouring fit solutions. We thoroughly tested the performance of GAUSSPY+ on synthetic spectra and a test field from the Galactic Ring Survey. We found that GAUSSPY+ can deal with cases of complex emission and even low to moderate signal-to-noise values

    Multiscale vessel enhancement filtering

    Full text link

    MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals

    Get PDF
    MicroRNAs (miRNAs) play diverse roles in regulating cellular and developmental functions. We have profiled the miRNA expression in peripheral blood mononuclear cells from 36 HIV-1 seropositive individuals and 12 normal controls. The HIV-1-positive individuals were categorized operationally into four classes based on their CD4+ T-cell counts and their viral loads. We report that specific miRNA signatures can be observed for each of the four classes

    HCN emission from translucent gas and UV-illuminated cloud edges revealed by wide-field IRAM 30m maps of Orion B GMC: Revisiting its role as tracer of the dense gas reservoir for star formation

    Get PDF
    We present 5 deg^2 (~250 pc^2) HCN, HNC, HCO+, and CO J=1-0 maps of the Orion B GMC, complemented with existing wide-field [CI] 492 GHz maps, as well as new pointed observations of rotationally excited HCN, HNC, H13CN, and HN13C lines. We detect anomalous HCN J=1-0 hyperfine structure line emission almost everywhere in the cloud. About 70% of the total HCN J=1-0 luminosity arises from gas at A_V < 8 mag. The HCN/CO J=1-0 line intensity ratio shows a bimodal behavior with an inflection point at A_V < 3 mag typical of translucent gas and UV-illuminated cloud edges. We find that most of the HCN J=1-0 emission arises from extended gas with n(H2) < 10^4 cm^-3, even lower density gas if the ionization fraction is > 10^-5 and electron excitation dominates. This result explains the low-A_V branch of the HCN/CO J=1-0 intensity ratio distribution. Indeed, the highest HCN/CO ratios (~0.1) at A_V < 3 mag correspond to regions of high [CI] 492 GHz/CO J=1-0 intensity ratios (>1) characteristic of low-density PDRs. Enhanced FUV radiation favors the formation and excitation of HCN on large scales, not only in dense star-forming clumps. The low surface brightness HCN and HCO+ J=1-0 emission scale with I_FIR (a proxy of the stellar FUV radiation field) in a similar way. Together with CO J=1-0, these lines respond to increasing I_FIR up to G0~20. On the other hand, the bright HCN J=1-0 emission from dense gas in star-forming clumps weakly responds to I_FIR once the FUV radiation field becomes too intense (G0>1500). The different power law scalings (produced by different chemistries, densities, and line excitation regimes) in a single but spatially resolved GMC resemble the variety of Kennicutt-Schmidt law indexes found in galaxy averages. As a corollary for extragalactic studies, we conclude that high HCN/CO J=1-0 line intensity ratios do not always imply the presence of dense gas.Comment: accepted for publication in A&A. 24 pages, 18 figures, plus Appendix. Abridged Abstract. English language not edite

    The mechanical effects of short-circuit currents in open air substations.

    Full text link
    SHort-circuit mechanical effects in substation is investigated by tests and simulations. Simplified equations are deduced to prepare standardisation of a procedure forthe design of substation against short-circuit mechanicle effects

    The magnetic field in the Flame nebula

    Get PDF
    International audienceContext. Star formation drives the evolution of galaxies and the cycling of matter between different phases of the interstellar medium and stars. The support of interstellar clouds against gravitational collapse by magnetic fields has been proposed as a possible explanation for the low observed star formation efficiency in galaxies and the Milky Way. The Planck satellite provided the first all-sky map of the magnetic field geometry in the diffuse interstellar medium on angular scales of 5–15′. However, higher spatial resolution observations are required to understand the transition from diffuse, subcritical gas to dense, gravitationally unstable filaments.Aims. NGC 2024, also known as the Flame nebula, is located in the nearby Orion B molecular cloud. It contains a young, expanding H II region and a dense supercritical filament. This filament harbors embedded protostellar objects and is likely not supported by the magnetic field against gravitational collapse. Therefore, NGC 2024 provides an excellent opportunity to study the role of magnetic fields in the formation, evolution, and collapse of dense filaments, the dynamics of young H II regions, and the effects of mechanical and radiative feedback from massive stars on the surrounding molecular gas.Methods. We combined new 154 and 216 μm dust polarization measurements carried out using the HAWC+ instrument aboard SOFIA with molecular line observations of 12CN(1−0) and HCO+(1−0) from the IRAM 30-m telescope to determine the magnetic field geometry, and to estimate the plane of the sky magnetic field strength across the NGC 2024 H II region and the surrounding molecular cloud.Results. The HAWC+ observations show an ordered magnetic field geometry in NGC 2024 that follows the morphology of the expanding H II region and the direction of the main dense filament. The derived plane of the sky magnetic field strength is moderate, ranging from 30 to 80 μG. The strongest magnetic field is found at the eastern edge of the H II region, characterized by the highest gas densities and molecular line widths. In contrast, the weakest field is found toward the main, dense filament in NGC 2024.Conclusions. We find that the magnetic field has a non-negligible influence on the gas stability at the edges of the expanding H II shell (gas impacted by stellar feedback) and the filament (site of current star formation)
    corecore