439 research outputs found

    Soliton solutions of Calogero model in harmonic potential

    Full text link
    A classical Calogero model in an external harmonic potential is known to be integrable for any number of particles. We consider here reductions which play a role of "soliton" solutions of the model. We obtain these solutions both for the model with finite number of particles and in a hydrodynamic limit. In the latter limit the model is described by hydrodynamic equations on continuous density and velocity fields. Soliton solutions in this case are finite dimensional reductions of the hydrodynamic model and describe the propagation of lumps of density and velocity in the nontrivial background.Comment: 25 pages, 2 figure

    Electrografting of BTSE: Zn films for advanced steel-aluminum joining by plastic deformation

    Get PDF
    This article presents the application of an adhesion promoting highly crosslinked ultrathin organic-inorganic hybrid layer applied to steel which promotes the subsequent joining process based on plastic deformation. The tensile shear results show that a significant increase of the bond strength between low-alloy steel (DC04) and aluminum (AW1050A H111), upon cold-pressure welding (CPW), could be achieved. Electrografting of an ultra-thin film of 1,2-bis(triethoxysilyl)ethane (BTSE) films on the steel surface was done from ethanolic solutions containing zinc ions. Based on surface spectroscopic analysis it is shown that silanol moieties present in the organosilane deposits can form stable chemical bonds with both the iron oxide covered steel and the aluminum oxide covered aluminum alloy. The successful modification of metal oxide surfaces with BTSE has been demonstrated via SEM-EDX, AFM, PM-IRRAS, and XPS measurements. In addition, electrochemical analysis of the BTSE:Zn films showed that the films lead to very good corrosion properties even at low thicknesses

    Efficient and Unbiased Estimation of Population Size

    Get PDF
    Population sizing from still aerial pictures is of wide applicability in ecological and social sciences. The problem is long standing because current automatic detection and counting algorithms are known to fail in most cases, and exhaustive manual counting is tedious, slow, difficult to verify and unfeasible for large populations. An alternative is to multiply population density with some reference area but, unfortunately, sampling details, handling of edge effects, etc., are seldom described. For the first time we address the problem using principles of geometric sampling. These principles are old and solid, but largely unknown outside the areas of three dimensional microscopy and stereology. Here we adapt them to estimate the size of any population of individuals lying on an essentially planar area, e.g. people, animals, trees on a savanna, etc. The proposed design is unbiased irrespective of population size, pattern, perspective artifacts, etc. The implementation is very simple—it is based on the random superimposition of coarse quadrat grids. Also, an objective error assessment is often lacking. For the latter purpose the quadrat counts are often assumed to be independent. We demonstrate that this approach can perform very poorly, and we propose (and check via Monte Carlo resampling) a new theoretical error prediction formula. As far as efficiency, counting about 50 (100) individuals in 20 quadrats, can yield relative standard errors of about 8% (5%) in typical cases. This fact effectively breaks the barrier hitherto imposed by the current lack of automatic face detection algorithms, because semiautomatic sampling and manual counting becomes an attractive option

    Spatial representation of temporal information through spike timing dependent plasticity

    Get PDF
    We suggest a mechanism based on spike time dependent plasticity (STDP) of synapses to store, retrieve and predict temporal sequences. The mechanism is demonstrated in a model system of simplified integrate-and-fire type neurons densely connected by STDP synapses. All synapses are modified according to the so-called normal STDP rule observed in various real biological synapses. After conditioning through repeated input of a limited number of of temporal sequences the system is able to complete the temporal sequence upon receiving the input of a fraction of them. This is an example of effective unsupervised learning in an biologically realistic system. We investigate the dependence of learning success on entrainment time, system size and presence of noise. Possible applications include learning of motor sequences, recognition and prediction of temporal sensory information in the visual as well as the auditory system and late processing in the olfactory system of insects.Comment: 13 pages, 14 figures, completely revised and augmented versio

    Type 1 Diabetes Mellitus reversal via implantation of magnetically purified microencapsulated pseudoislets

    Get PDF
    [Abstract] Microencapsulation of pancreatic islets for the treatment of Type I Diabetes Mellitus (T1DM) generates a high quantity of empty microcapsules, resulting in high therapeutic graft volumes that can enhance the host’s immune response. We report a 3D printed microfluidic magnetic sorting device for microcapsules purification with the objective to reduce the number of empty microcapsules prior transplantation. In this study, INS1E pseudoislets were microencapsulated within alginate (A) and alginate-poly-L-lysine-alginate (APA) microcapsules and purified through the microfluidic device. APA microcapsules demonstrated higher mechanical integrity and stability than A microcapsules, showing better pseudoislets viability and biological function. Importantly, we obtained a reduction of the graft volume of 77.5% for A microcapsules and 78.6% for APA microcapsules. After subcutaneous implantation of induced diabetic Wistar rats with magnetically purified APA microencapsulated pseudoislets, blood glucose levels were restored into normoglycemia (<200 mg/dL) for almost 17 weeks. In conclusion, our described microfluidic magnetic sorting device represents a great alternative approach for the graft volume reduction of microencapsulated pseudoislets and its application in T1DM disease.Universidad del País Vasco; ESPPOC 16/65Universidad del País vasco; EHUa16/06Gobierno Vasco; IT907-16Gobierno Vasco; KK-2017/0000088Gobierno Vasco; 307616FKA4Ministerio de Economía y Competitividad; RYC-2012-1079

    Self-organization in the olfactory system: one shot odor recognition in insects

    Get PDF
    We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes

    Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly

    Get PDF
    Chitosan (Ch) microspheres have been developed by precipitation method, cross-linked with glutaraldehyde and used as a template for layer-by-layer (LBL) deposition of two natural polyelectrolytes. Using a LBL methodology, Ch microspheres were alternately coated with hyaluronic acid (HA) and Ch under mild conditions. The roughness of the Ch-based crosslinked microspheres was characterized by atomic force microscopy (AFM). Morphological characterization was performed by environmental scanning electron microscopy (ESEM), scanning electron microscopy (SEM) and stereolight microscopy. The swelling behaviour of the microspheres demonstrated that the ones with more bilayers presented the highest water uptake and the uncoated cross-linked Ch microspheres showed the lowest uptake capability. Microspheres presented spherical shape with sizes ranging from 510 to 840 lm. ESEM demonstrated that a rougher surface with voids is formed in multilayered microspheres caused by the irregular stacking of the layers. A short term mechanical stability assay was also performed, showing that the LBL procedure with more than five bilayers of HA/Ch over Ch cross-linked microspheres provide higher mechanical stability
    • …
    corecore