15 research outputs found

    B7h triggering inhibits the migration of tumor cell lines

    Get PDF
    Vascular endothelial cells (ECs) and several cancer cells express B7h, which is the ligand of the ICOS T cell costimulatory molecule. We have previously shown that B7h triggering via a soluble form of ICOS (ICOS-Fc) inhibits the adhesion of polymorphonuclear and tumor cell lines to HUVECs; thus, we suggested that ICOS-Fc may act as an anti-inflammatory and antitumor agent. Because cancer cell migration and angiogenesis are crucial for metastasis dissemination, the aim of this work was to evaluate the effect of ICOS-Fc on the migration of cancer cells and ECs. ICOS-Fc specifically inhibited the migration of HUVECs, human dermal lymphatic ECs, and the HT29, HCT116, PC-3, HepG2, JR8, and M14 tumor cell lines expressing high levels of B7h, whereas it was ineffective in the RPMI7932, PCF-2, LM, and BHT-101 cell lines expressing low levels of B7h. Furthermore, ICOS-Fc downmodulated hepatocyte growth factor facilitated the epithelial-to-mesenchymal transition in HepG2 cells. Moreover, ICOS-Fc downmodulated the phosphorylation of focal adhesion kinase and the expression of \u3b2-Pix in both HUVECs and tumor cell lines. Finally, treatment with ICOS-Fc inhibited the development of lung metastases upon injection of NOD-SCID-IL2R\u3b3null mice with CF-PAC1 cells, as well as C57BL/6 mice with B16-F10 cells. Therefore, the B7h-ICOS interaction may modulate the spread of cancer metastases, which suggests the novel use of ICOS-Fc as an immunomodulatory drug. However, in the B16-F10-metastasized lungs, ICOS-Fc also increased IL-17A/RORc and decreased IL-10/Foxp3 expression, which indicates that it also exerts positive effects on the antitumor immune response

    Role of anti-osteopontin antibodies in multiple sclerosis and experimental autoimmune encephalomyelitis

    Get PDF
    Osteopontin (OPN) is highly expressed in demyelinating lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). OPN is cleaved by thrombin into N- (OPN-N) and C-terminal (OPN-C) fragments with different ligands and functions. In EAE, administering recombinant OPN induces relapses, whereas treatment with anti-OPN antibodies ameliorates the disease. Anti-OPN autoantibodies (autoAbs) are spontaneously produced during EAE but have never been detected in MS. The aim of the study was to evaluate anti-OPN autoAbs in the serum of MS patients, correlate them with disease course, and recapitulate the human findings in EAE. We performed ELISA in the serum of 122 patients collected cross-sectionally, and 50 patients with relapsing-remitting (RR) disease collected at diagnosis and followed longitudinally for 10 years. In the cross-sectional patients, the autoAb levels were higher in the RR patients than in the primary- and secondary-progressive MS and healthy control groups, and they were highest in the initial stages of the disease. In the longitudinal group, the levels at diagnosis directly correlated with the number of relapses during the following 10 years. Moreover, in patients with active disease, who underwent disease-modifying treatments, autoAbs were higher than in untreated patients and were associated with low MS severity score. The autoAb displayed neutralizing activity and mainly recognized OPN-C rather than OPN-N. To confirm the clinical effect of these autoAbs in vivo, EAE was induced using myelin oligodendrocyte glycoprotein MOG35-55 in C57BL/6 mice pre-vaccinated with ovalbumin (OVA)-linked OPN or OVA alone. We then evaluated the titer of antibodies to OPN, the clinical scores and in vitro cytokine secretion by spleen lymphocytes. Vaccination significantly induced antibodies against OPN during EAE, decreased disease severity, and the protective effect was correlated with decreased T cell secretion of interleukin 17 and interferon-\u3b3 ex vivo. The best effect was obtained with OPN-C, which induced significantly faster and more complete remission than other OPN vaccines. In conclusion, these data suggest that production of anti-OPN autoAbs may favor remission in both MS and EAE. Novel strategies boosting their levels, such as vaccination or passive immunization, may be proposed as a future strategy in personalized MS therapy

    IL-17 protects T cells from apoptosis and contributes to development of ALPS-like phenotypes

    No full text
    In autoimmune/lymphoproliferative syndrome (ALPS), defective Fas death receptor function causes lymphadenomegaly/splenomegaly, the expansion of T-cell receptor \u3b1\u3b2(+) CD4/CD8 double-negative T cells, and frequent development of hematologic autoimmunity. Dianzani autoimmune lymphoproliferative disease (DALD) has a similar phenotype but lacks the expansion of double-negative T cells. This work shows that patients with ALPS and DALD have high serum levels of interleukin 17A (IL-17A), IL-17F, and IL-17AF, which are involved in several autoimmune diseases, and that their T cells show increased secretion of these cytokines upon activation in vitro. The following data indicate that these cytokines may contribute to ALPS and DALD: (1) recombinant IL-17A and IL-17F significantly inhibit Fas-induced cell death in Fas-sensitive T cells from healthy donors; (2) this inhibitory effect is also induced by the patients' serum and is reversed by anti-IL-17A antibodies; (3) IL-17A neutralization substantially increases Fas-induced cell death in T cells from ALPS and DALD patients in vitro; and (4) treatment with anti-IL-17A antibodies ameliorates the autoimmune manifestations and, at a lesser extent, the lymphoproliferative phenotype and prolongs survival in MRLlpr/lpr mice, which are an animal model of ALPS. These data suggest that IL-17A and IL-17F could be targeted therapeutically to improve Fas function in ALPS and DALD

    Anti-cytokine autoantibodies in autoimmune diseases

    No full text
    An overview of the current literature is showing that autoantibodies (AutoAbs) against cytokines are produced in several pathological conditions, including autoimmune diseases, but can also be detected in healthy individuals. In autoimmune diseases, these AutoAbs may also be prognostic markers, either negative (such as AutoAbs to IL-8 and IL-1\u3b1 in rheumatoid arthritis) or positive (such as AutoAbs to IL-6 in systemic sclerosis and those to osteopontin in rheumatoid arthritis). They may have neutralizing activity and influence the course of the physiological and pathological immune responses. High levels of AutoAbs against cytokines may even lead to immunodeficiency, such as those to IL-17 in autoimmune polyendocrine syndrome type I or those to IFN-\u3b3 in mycobacterial infections. Their role in human therapy may be exploited not only through passive immunization but also through vaccination, which may improve the costs for long lasting treatments of autoimmune diseases. Detection and quantification of these AutoAbs can be profoundly influenced by the technique used and standardization of these methods is needed to increase the value of their analysis

    Differential induction of IL-17, IL-10, and IL-9 in human T helper cells by B7h and B7.1.

    Get PDF
    ICOS and CD28 are expressed by T cells and are involved in costimulation of cytokine production in T helper (TH) cells. ICOS binds B7h expressed by several cell types, whereas CD28 binds B7.1 and B7.2 expressed by activated antigen presenting cells. This work investigated the role of B7h and B7.1 in TH17 and TH9 cell differentiation by assessing activity of recombinant B7h-Fc and B7.1-Fc on human na\uefve TH cells activated in the presence of different combinations of exogenous cytokines. In the presence of TGF-\u3b21 and IL-1\u3b2 (TH17 promoting condition), B7h-Fc was more effective than B7.1-Fc in inducing IL-17A and IL-10 secretion, whereas B7.1-Fc was more effective in inducing IL-17F. Dual costimulation with B7h-Fc and B7.1-Fc displayed an intermediate pattern with predominance of IL-17F over IL-17A, secretion of high levels of IL-10, and secretion of IL-9 levels lower than those induced by B7.1-Fc alone. In the presence of TGF-\u3b21 and IL-4 (TH9 promoting condition), B7h-Fc induced IL-17A only, whereas B7.1-Fc induced also IL-17F, IL-10, and high levels of IL-9. Experiments on memory TH cells showed that B7h-Fc mainly supported secretion of IL-17A and IL-10, whereas B7.1-Fc supported secretion of IL-17A, IL-17F, IL-10, and IL-9. These data indicate that B7h and B7.1 play different roles in modulation of TH17 and TH9 differentiation. This plasticity might be important in the immune response to pathogens and tumors, and in the development of autoimmune diseases, and should be taken in consideration in designing of immunotherapeutic protocols triggering ICOS or CD28

    The -346T polymorphism of the SH2D1A gene is a risk factor for development of autoimmunity/lymphoproliferation in males with defective Fas function

    No full text
    Inherited defects decreasing function of the Fas death receptor cause autoimmune lymphoproliferative syndrome (ALPS) and its variant Dianzani autoimmune lymphoproliferative disease (DALD). Since a deleterious mutation of the SH2D1A gene protects MRLIpr/Ipr mice from ALPS development, we investigated the role of SH2D1A, located in the X chromosome, in 51 patients with ALPS or DALD by mutational screening of coding and regulative sequences. Allelic frequency of the -346C>T polymorphism was different in male patients and controls (-346T: 61% vs 36%, p = 0.01), with similar frequencies in ALPS and DALD. By contrast, no differences were found among females or between the controls and patients with multiple sclerosis (229 males, 157 females). Further analyses showed that -346C was a methylation site in CD8(+) T and natural killer cells, and SH2D1A expression was higher in -346T than in -346C males. Finally, in vitro-activated T cells from -346T males produced lower amounts of interferon-gamma than those from -346C males. These data suggest that -346T is a predisposing factor for ALPS and DALD in males possibly because of its effect on SAP expression influencing the T-cell response. (C) 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved

    Defective Fas function in the ALPS and DALD patients carrying the UNC13D variations.

    No full text
    <p>[A] Fas-induced cell death in T cells from the ALPS and DALD patients carrying the <i>UNC13D</i> variations. Activated T cells were treated with anti-Fas mAb and survival was assessed after 18 hours. The results are expressed as specific cell survival %. The dotted line indicates the upper limit of the normal range calculated as the 95<sup>th</sup> percentile of data obtained from 200 healthy controls; two or more were run in each experiment as positive controls; each patient was evaluated at least twice with the same result. [B] Fas expression and caspase-8 activity in lysates of 293T cells transfected with the wild-type (WT) or mutated form of <i>FAS</i> (Pt.1: p.Gln273His, Pt.2: p.Glu261Lys); cells were lysed 24 hours after transfection. <i>Upper panels</i>: Western blot analysis of the transfected Fas performed using anti-FLAG and anti-β-actin antibodies<i>. Lower panels</i>: fluorimetric enzyme assay for caspase-8 activity. Data are relative to those displayed by mock-transfected cells and are expressed as the mean and SE of the results from 4 experiments performed in duplicate. *p<0.05; **p<0.01 vs. Fas<sup>wt</sup> transfected cells.</p
    corecore