134 research outputs found

    The environmental impact of fertilizer embodied in a wheat-to-bread supply chain

    Get PDF
    Food production and consumption cause approximately one-third of total greenhouse gas emissions, and therefore delivering food security challenges not only the capacity of our agricultural system, but also its environmental sustainability. Knowing where and at what level environmental impacts occur within particular food supply chains is necessary if farmers, agri-food industries and consumers are to share responsibility to mitigate these impacts. Here we present an analysis of a complete supply chain for a staple of the global diet, a loaf of bread. We obtained primary data for all the processes involved in the farming, production and transport systems that lead to the manufacture of a particular brand of 800 g loaf. The data were analysed using an advanced life cycle assessment (LCA) tool, yielding metrics of environmental impact, including greenhouse gas emissions. We show that more than half of the environmental impact of producing the loaf of bread arises directly from wheat cultivation, with the use of ammonium nitrate fertilizer alone accounting for around 40%. These findings reveal the dependency of bread production on the unsustainable use of fertilizer and illustrate the detail needed if the actors in the supply chain are to assume shared responsibility for achieving sustainable food production

    Kin5 Knockdown in Tetrahymena thermophila Using RNAi Blocks Cargo Transport of Gef1

    Get PDF
    A critical process that builds and maintains the eukaryotic cilium is intraflagellar transport (IFT). This process utilizes members of the kinesin-2 superfamily to transport cargo into the cilium (anterograde transport) and a dynein motor for the retrograde traffic. Using a novel RNAi knockdown method, we have analyzed the function of the homodimeric IFT kinesin-2, Kin5, in Tetrahymena ciliary transport. In RNAi transformants, Kin5 was severely downregulated and disappeared from the cilia, but cilia did not resorb, although tip structure was affected. After deciliation of the knockdown cell, cilia regrew and cells swam, which suggested that Kin5 is not responsible for the trafficking of axonemal precursors to build the cilium, but could be transporting molecules that act in ciliary signal transduction, such as guanine nucleotide exchange proteins (GEFs). Gef1 is a Tetrahymena ciliary protein, and current coimmunoprecipitation and immunofluorescence studies showed that it is absent in regrowing cilia of the knockdown cells lacking ciliary Kin5. We suggest that one important cargo of Kin5 is Gef1 and knockdown of Kin5 results in cell lethality

    Occurrence, Distribution, and Ecological Risk of Fluoroquinolones in Rivers and Wastewaters

    Get PDF
    The use of fluoroquinolones for the treatment of infections in humans and animals has increased in Argentina, and they can be found in large amounts in water bodies. The present study investigated the occurrence and associated ecological risk of 5 fluoroquinolones in rivers and farm wastewaters of San Luis, Santa Fe, Córdoba, Entre Ríos, and Buenos Aires provinces of Argentina by high-performance liquid chromatography coupled to fast-scanning fluorescence detection and ultra–high-performance liquid chromatography coupled to triple quadrupole mass spectrometry detection. The maximum concentrations of ciprofloxacin, enrofloxacin, ofloxacin, enoxacin, and difloxacin found in wastewater were 1.14, 11.9, 1.78, 22.1, and 14.2 μg L–1, respectively. In the case of river samples, only enrofloxacin was found, at a concentration of 0.97 μg L–1. The individual risk of aquatic organisms associated with water pollution due to fluoroquinolones was higher in bacteria, cyanobacteria, algae, plants, and anurans than in crustaceae and fish, with, in some cases, risk quotients >1. The proportion of samples classified as high risk was 87.5% for ofloxacin, 63.5% for enrofloxacin, 57.1% for ciprofloxacin, and 25% for enoxacin. Our results suggest that the prevalence of fluoroquinolones in water could be potentially risky for the aquatic ecosystem, and harmful to biodiversity.Fil: Teglia, Carla Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Perez, Florencia Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Michlig, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Investigación y Análisis de Residuos y Contaminantes Químicos; ArgentinaFil: Repetti, María Rosa. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Investigación y Análisis de Residuos y Contaminantes Químicos; ArgentinaFil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Culzoni, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentin

    Transcriptome Analysis of the Model Protozoan, Tetrahymena thermophila, Using Deep RNA Sequencing

    Get PDF
    Background: The ciliated protozoan Tetrahymena thermophila is a well-studied single-celled eukaryote model organism for cellular and molecular biology. However, the lack of extensive T. thermophila cDNA libraries or a large expressed sequence tag (EST) database limited the quality of the original genome annotation. Methodology/Principal Findings: This RNA-seq study describes the first deep sequencing analysis of the T. thermophila transcriptome during the three major stages of the life cycle: growth, starvation and conjugation. Uniquely mapped reads covered more than 96 % of the 24,725 predicted gene models in the somatic genome. More than 1,000 new transcribed regions were identified. The great dynamic range of RNA-seq allowed detection of a nearly six order-of-magnitude range of measurable gene expression orchestrated by this cell. RNA-seq also allowed the first prediction of transcript untranslated regions (UTRs) and an updated (larger) size estimate of the T. thermophila transcriptome: 57 Mb, or about 55 % of the somatic genome. Our study identified nearly 1,500 alternative splicing (AS) events distributed over 5.2 % of T. thermophila genes. This percentage represents a two order-of-magnitude increase over previous EST-based estimates in Tetrahymena. Evidence of stage-specific regulation of alternative splicing was also obtained. Finally, our study allowed us to completely confirm about 26.8 % of the genes originally predicted by the gene finder, to correct coding sequence boundaries an

    Tetrahymena Metallothioneins Fall into Two Discrete Subfamilies

    Get PDF
    BACKGROUND: Metallothioneins are ubiquitous small, cysteine-rich, multifunctional proteins which can bind heavy metals. METHODOLOGY/PRINCIPAL FINDINGS: We report the results of phylogenetic and gene expression analyses that include two new Tetrahymena thermophila metallothionein genes (MTT3 and MTT5). Sequence alignments of all known Tetrahymena metallothioneins have allowed us to rationalize the structure of these proteins. We now formally subdivide the known metallothioneins from the ciliate genus Tetrahymena into two well defined subfamilies, 7a and 7b, based on phylogenetic analysis, on the pattern of clustering of Cys residues, and on the pattern of inducibility by the heavy metals Cd and Cu. Sequence alignment also reveals a remarkably regular, conserved and hierarchical modular structure of all five subfamily 7a MTs, which include MTT3 and MTT5. The former has three modules, while the latter has only two. Induction levels of the three T. thermophila genes were determined using quantitative real time RT-PCR. Various stressors (including heavy metals) brought about dramatically different fold-inductions for each gene; MTT5 showed the highest fold-induction. Conserved DNA motifs with potential regulatory significance were identified, in an unbiased way, upstream of the start codons of subfamily 7a MTs. EST evidence for alternative splicing in the 3′ UTR of the MTT5 mRNA with potential regulatory activity is reported. CONCLUSION/SIGNIFICANCE: The small number and remarkably regular structure of Tetrahymena MTs, coupled with the experimental tractability of this model organism for studies of in vivo function, make it an attractive system for the experimental dissection of the roles, structure/function relationships, regulation of gene expression, and adaptive evolution of these proteins, as well as for the development of biotechnological applications for the environmental monitoring of toxic substances

    The Recombinases Rad51 and Dmc1 Play Distinct Roles in DNA Break Repair and Recombination Partner Choice in the Meiosis of Tetrahymena

    Get PDF
    Repair of programmed DNA double-strand breaks (DSBs) by meiotic recombination relies on the generation of flanking 3′ single-stranded DNA overhangs and their interaction with a homologous double-stranded DNA template. In various common model organisms, the ubiquitous strand exchange protein Rad51 and its meiosis-specific homologue Dmc1 have been implicated in the joint promotion of DNA–strand exchange at meiotic recombination sites. However, the division of labor between these two recombinases is still a puzzle. Using RNAi and gene-disruption experiments, we have studied their roles in meiotic recombination and chromosome pairing in the ciliated protist Tetrahymena as an evolutionarily distant meiotic model. Cytological and electrophoresis-based assays for DSBs revealed that, without Rad51p, DSBs were not repaired. However, in the absence of Dmc1p, efficient Rad51p-dependent repair took place, but crossing over was suppressed. Immunostaining and protein tagging demonstrated that only Dmc1p formed strong DSB–dependent foci on meiotic chromatin, whereas the distribution of Rad51p was diffuse within nuclei. This suggests that meiotic nucleoprotein filaments consist primarily of Dmc1p. Moreover, a proximity ligation assay confirmed that little if any Rad51p forms mixed nucleoprotein filaments with Dmc1p. Dmc1p focus formation was independent of the presence of Rad51p. The absence of Dmc1p did not result in compensatory assembly of Rad51p repair foci, and even artificial DNA damage by UV failed to induce Rad51p foci in meiotic nuclei, while it did so in somatic nuclei within one and the same cell. The observed interhomologue repair deficit in dmc1Δ meiosis is consistent with a requirement for Dmc1p in promoting the homologue as the preferred recombination partner. We propose that relatively short and/or transient Rad51p nucleoprotein filaments are sufficient for intrachromosomal recombination, whereas long nucleoprotein filaments consisting primarily of Dmc1p are required for interhomolog recombination

    Complete Mitochondrial Genome Sequence of Three Tetrahymena Species Reveals Mutation Hot Spots and Accelerated Nonsynonymous Substitutions in Ymf Genes

    Get PDF
    The ciliate Tetrahymena, a model organism, contains divergent mitochondrial (Mt) genome with unusual properties, where half of its 44 genes still remain without a definitive function. These genes could be categorized into two major groups of KPC (known protein coding) and Ymf (genes without an identified function). To gain insights into the mechanisms underlying gene divergence and molecular evolution of Tetrahymena (T.) Mt genomes, we sequenced three Mt genomes of T.paravorax, T.pigmentosa, and T.malaccensis. These genomes were aligned and the analyses were carried out using several programs that calculate distance, nucleotide substitution (dn/ds), and their rate ratios (ω) on individual codon sites and via a sliding window approach. Comparative genomic analysis indicated a conserved putative transcription control sequence, a GC box, in a region where presumably transcription and replication initiate. We also found distinct features in Mt genome of T.paravorax despite similar genome organization among these ∼47 kb long linear genomes. Another significant finding was the presence of at least one or more highly variable regions in Ymf genes where majority of substitutions were concentrated. These regions were mutation hotspots where elevated distances and the dn/ds ratios were primarily due to an increase in the number of nonsynonymous substitutions, suggesting relaxed selective constraint. However, in a few Ymf genes, accelerated rates of nonsynonymous substitutions may be due to positive selection. Similarly, on protein level the majority of amino acid replacements occurred in these regions. Ymf genes comprise half of the genes in Tetrahymena Mt genomes, so understanding why they have not been assigned definitive functions is an important aspect of molecular evolution. Importantly, nucleotide substitution types and rates suggest possible reasons for not being able to find homologues for Ymf genes. Additionally, comparative genomic analysis of complete Mt genomes is essential in identifying biologically significant motifs such as control regions

    Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

    Get PDF
    The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance

    Distinct Functional Roles of β-Tubulin Isotypes in Microtubule Arrays of Tetrahymena thermophila, a Model Single-Celled Organism

    Get PDF
    <div><h3>Background</h3><p>The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, <em>Tetrahymena thermophila</em>. <em>Tetrahymena</em> forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of <em>Tetrahymena</em> demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (<em>BTU1</em> and <em>BTU2</em>) encode the canonical β-tubulin, BTU2, and six genes (<em>BLT1-6</em>) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2.</p> <h3>Methodology/Principal Findings</h3><p>With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins <em>in vivo</em>, we transformed <em>Tetrahymena</em> with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically.</p> <h3>Conclusion/Significance</h3><p>We conclude that <em>Tetrahymena</em> uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis.</p> </div
    corecore