14 research outputs found

    Formation of carbohydrate-functionalised polystyrene and glass slides and their analysis by MALDI-TOF MS

    Get PDF
    Glycans functionalised with hydrophobic trityl groups were synthesised and adsorbed onto polystyrene and glass slides in an array format. The adsorbed glycans could be analysed directly on these minimally conducting surfaces by MALDI-TOF mass spectrometry analysis after aluminium tape was attached to the underside of the slides. Furthermore, the trityl group appeared to act as an internal matrix and no additional matrix was necessary for the MS analysis. Thus, trityl groups can be used as simple hydrophobic, noncovalently linked anchors for ligands on surfaces and at the same time facilitate the in situ mass spectrometric analysis of such ligands

    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY

    No full text
    Quantum chemical characterization of cycloaddition reactions between 1,3-butadiene and oxyallyl cations of varying electrophilicity

    Synthesis of fluorinated maltose derivatives for monitoring protein interaction by 19F NMR

    No full text
    A novel reporter system, which is applicable to the 19F NMR investigation of protein interactions, is presented. This approach uses 2-F-labeled maltose as a spy ligand to indirectly probe protein–ligand or protein–protein interactions of proteins fused or tagged to the maltose-binding protein (MBP). The key feature is the simultaneous NMR observation of both 19F NMR signals of gluco/manno-type-2-F-maltose-isomers; one isomer (α-gluco-type) binds to MBP and senses the protein interaction, and the nonbinding isomers (ÎČ-gluco- and/or α/ÎČ-manno-type) are utilized as internal references. Moreover, this reporter system was used for relative affinity studies of fluorinated and nonfluorinated carbohydrates to the maltose-binding protein, which were found to be in perfect agreement with published X-ray data. The results of the NMR competition experiments together with the established correlation between 19F chemical shift data and molecular interaction patterns, suggest valuable applications for studies of protein–ligand interaction interfaces

    Equilibrium constants and protonation site for N-methylbenzenesulfonamides

    Get PDF
    The protonation equilibria of four substituted N-methylbenzenesulfonamides, X-MBS: X = 4-MeO (3a), 4-Me (3b), 4-Cl (3c) and 4-NO2 (3d), in aqueous sulfuric acid were studied at 25 °C by UV–vis spectroscopy. As expected, the values for the acidity constants are highly dependent on the electron-donor character of the substituent (the pK BH+ values are −3.5 ± 0.2, −4.2 ± 0.2, −5.2 ± 0.3 and −6.0 ± 0.3 for 3a, 3b, 3c and 3d, respectively). The solvation parameter m* is always higher than 0.5 and points to a decrease in the importance of solvation on the cation stabilization as the electron-donor character of the substituent increases. Hammett plots of the equilibrium constants showed a better correlation with the σ+ substituent parameter than with σ, which indicates that the initial protonation site is the oxygen atom of the sulfonyl group
    corecore