25 research outputs found

    Antioxidant and Photoprotection Networking in the Coastal Diatom <i>Skeletonema marinoi</i>

    Get PDF
    Little is known on the antioxidant activity modulation in microalgae, even less in diatoms. Antioxidant molecule concentrations and their modulation in microalgae has received little attention and the interconnection between light, photosynthesis, photoprotection, and antioxidant network in microalgae is still unclear. To fill this gap, we selected light as external forcing to drive physiological regulation and acclimation in the costal diatom Skeletonema marinoi. We investigated the role of light regime on the concentration of ascorbic acid, phenolic compounds and among them flavonoids and their connection with photoprotective mechanisms. We compared three high light conditions, differing in either light intensity or wave distribution, with two low light conditions, differing in photoperiod, and a prolonged darkness. The change in light distribution, from sinusoidal to square wave distribution was also investigated. Results revealed a strong link between photoprotection, mainly relied on xanthophyll cycle operation, and the antioxidant molecules and activity modulation. This study paves the way for further investigation on the antioxidant capacity of diatoms, which resulted to be strongly forced by light conditions, also in the view of their potential utilization in nutraceuticals or new functional cosmetic products

    <i>Amphidinium</i> spp. as a Source of Antimicrobial, Antifungal, and Anticancer Compounds

    No full text
    Dinoflagellates make up the second largest marine group of marine unicellular eukaryotes in the world ocean and comprise both heterotrophic and autotrophic species, encompassing a wide genetic and chemical diversity. They produce a plethora of secondary metabolites that can be toxic to other species and are mainly used against predators and competing species. Dinoflagellates are indeed often responsible for harmful algal bloom, where their toxic secondary metabolites can accumulate along the food chain, leading to significant damages to the ecosystem and human health. Secondary metabolites from dinoflagellates have been widely investigated for potential biomedical applications and have revealed multiple antimicrobial, antifungal, and anticancer properties. Species from the genus Amphidinium seem to be particularly interesting for the production of medically relevant compounds. The present review aims at summarising current knowledge on the diversity and the pharmaceutical properties of secondary metabolites from the genus Amphidinium. Specifically, Amphidinium spp. produce a range of polyketides possessing cytotoxic activities such as amphidinolides, caribenolides, amphidinins, and amphidinols. Potent antimicrobial properties against antibiotic-resistant bacterial strains have been observed for several amphidinins. Amphidinols revealed instead strong activities against infectious fungi such as Candida albicans and Aspergillus fumigatus. Finally, compounds such as amphidinolides, isocaribenolide-I, and chlorohydrin 2 revealed potent cytotoxic activities against different cancer cell lines. Overall, the wide variety of antimicrobial, antifungal, and anticancer properties of secondary metabolites from Amphidinium spp. make this genus a highly suitable candidate for future medical applications, spanning from cancer drugs to antimicrobial products that are alternatives to currently available antibiotic and antimycotic products

    Mini-Review: Potential of Diatom-Derived Silica for Biomedical Applications

    No full text
    Diatoms are unicellular eukaryotic microalgae widely distributed in aquatic environments, possessing a porous silica cell wall known as frustule. Diatom frustules are considered as a sustainable source for several industrial applications because of their high biocompatibility and the easiness of surface functionalisation, which make frustules suitable for regenerative medicine and as drug carriers. Frustules are made of hydrated silica, and can be extracted and purified both from living and fossil diatoms using acid treatments or high temperatures. Biosilica frustules have proved to be suitable for biomedical applications, but, unfortunately, they are not officially recognised as safe by governmental food and medical agencies yet. In the present review, we highlight the frustule formation process, the most common purification techniques, as well as advantages and bottlenecks related to the employment of diatom-derived silica for medical purposes, suggesting possible solutions for a large-scale biosilica production

    Determination of Lipid Hydroperoxides in Marine Diatoms by the FOX2 Assay

    No full text
    Ecologically-relevant marine diatoms produce a plethora of bioactive oxylipins deriving from fatty acid oxidation, including aldehydes, hydroxy-fatty acids, epoxy-hydroxy-fatty acids, and oxo-acids. These secondary metabolites have been related to the negative effect of diatoms on copepod reproduction, causing low hatching success and teratogenesis in the offspring during periods of intense diatom blooms. The common intermediates in the formation of oxylipins are fatty acid hydroperoxides. The quantitative measurement of these intermediates can fundamentally contribute to understanding the function and role of lipoxygenase metabolites in diatom-copepod interactions. Here, we describe the successful adaptation of the ferrous oxidation-xylenol orange 2 (FOX2) assay to diatom samples, which showed several advantages over other spectrophotometric and polarographic methods tested in the present work. Using this method we assessed fatty acid hydroperoxide levels in three diatom species: Skeletonema marinoi, Thalassiosira rotula, and Chaetoceros affinis, and discuss results in light of the literature data on their detrimental effects on copepod reproduction

    Determination of Lipid Hydroperoxides in Marine Diatoms by the FOX2 Assay

    Get PDF
    Ecologically-relevant marine diatoms produce a plethora of bioactive oxylipins deriving from fatty acid oxidation, including aldehydes, hydroxy-fatty acids, epoxy-hydroxy-fatty acids, and oxo-acids. These secondary metabolites have been related to the negative effect of diatoms on copepod reproduction, causing low hatching success and teratogenesis in the offspring during periods of intense diatom blooms. The common intermediates in the formation of oxylipins are fatty acid hydroperoxides. The quantitative measurement of these intermediates can fundamentally contribute to understanding the function and role of lipoxygenase metabolites in diatom-copepod interactions. Here, we describe the successful adaptation of the ferrous oxidation-xylenol orange 2 (FOX2) assay to diatom samples, which showed several advantages over other spectrophotometric and polarographic methods tested in the present work. Using this method we assessed fatty acid hydroperoxide levels in three diatom species: Skeletonema marinoi, Thalassiosira rotula, and Chaetoceros affinis, and discuss results in light of the literature data on their detrimental effects on copepod reproduction

    Insights into the light response of Skeletonema marinoi: Involvement of ovothiol

    Get PDF
    This article belongs to the Special Issue Sulfur-Containing Marine Bioactives.Diatoms are one of the most widespread groups of microalgae on Earth. They possess extraordinary metabolic capabilities, including a great ability to adapt to different light conditions. Recently, we have discovered that the diatom Skeletonema marinoi produces the natural antioxidant ovothiol B, until then identified only in clams. In this study, we investigated the light-dependent modulation of ovothiol biosynthesis in S. marinoi. Diatoms were exposed to different light conditions, ranging from prolonged darkness to low or high light, also differing in the velocity of intensity increase (sinusoidal versus square-wave distribution). The expression of the gene encoding the key ovothiol biosynthetic enzyme, ovoA, was upregulated by high sinusoidal light mimicking natural conditions. Under this situation higher levels of reactive oxygen species and nitric oxide as well as ovothiol and glutathione increase were detected. No ovoA modulation was observed under prolonged darkness nor low sinusoidal light. Unnatural conditions such as continuous square-wave light induced a very high oxidative stress leading to a drop in cell growth, without enhancing ovoA gene expression. Only one of the inducible forms of nitric oxide synthase, nos2, was upregulated by light with consequent production of NO under sinusoidal light and darkness conditions. Our data suggest that ovothiol biosynthesis is triggered by a combined light stress caused by natural distribution and increased photon flux density, with no influence from the daily light dose. These results open new perspectives for the biotechnological production of ovothiols, which are receiving a great interest for their biological activities in human model systems.A.M. and A.S. were supported by SZN Ph.D fellowships via the Open University.Peer reviewe

    Toxic Effect of Metal Doping on Diatoms as Probed by Broadband Terahertz Time-Domain Spectroscopy

    No full text
    The global marine environment is increasingly affected by human activities causing climate change, eutrophication, and pollution. These factors influence the metabolic mechanisms of phytoplankton species, such as diatoms. Among other pollutant agents, heavy metals can have dramatic effects on diatom viability. Detailed knowledge of the interaction of diatoms with metals is essential from both a fundamental and applicative point of view. To this aim, we assess terahertz time-domain spectroscopy as a tool for sensing the diatoms in aqueous systems which mimic their natural environment. Despite the strong absorption of terahertz radiation in water, we show that diatoms can be sensed by probing the water absorption enhancement in the terahertz range caused by the water–diatom interaction. We reveal that the addition of metal dopants affects this absorption enhancement, thus enabling the monitoring of the toxic effects of metals on diatoms using terahertz spectroscopy. We demonstrate that this technique can detect the detrimental effects of heavy metals earlier than conventional methods such as microscopy, enzymatic assays, and molecular analyses aimed at assessing the overexpression of genes involved in the heavy metal-stress response
    corecore