173 research outputs found

    Verification of a localization criterion for several disordered media

    Full text link
    We analytically compute a localization criterion in double scattering approximation for a set of dielectric spheres or perfectly conducting disks uniformly distributed in a spatial volume which can be either spherical or layered. For every disordered medium, we numerically investigate a localization criterion, and examine the influence of the system parameters on the wavelength localization domains.Comment: 30 pages, LateX, amstex, revtex styles, 20 figure

    Corrections to the Boltzmann mean free path in disordered systems with finite size scatterers

    Full text link
    The mean free path is an essential characteristic length in disordered systems. In microscopic calculations, it is usually approximated by the classical value of the elastic mean free path. It corresponds to the Boltzmann mean free path when only isotropic scattering is considered, but it is different for anisotropic scattering. In this paper, we work out the corrections to the so called Boltzmann mean free path due to multiple scattering effects on finite size scatterers, in the s-wave approximation, ie. when the elastic mean free path is equivalent to the Boltzmann mean free path. The main result is the expression for the mean free path expanded in powers of the perturbative parameter given by the scatterer density.Comment: 12 page

    The AMBRE Project: Stellar parameterisation of the ESO:FEROS archived spectra

    Full text link
    The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Cote d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. The analysis of the FEROS archived spectra for their stellar parameters (effective temperatures, surface gravities, global metallicities, alpha element to iron ratios and radial velocities) has been completed in the first phase of the AMBRE Project. From the complete ESO:FEROS archive dataset that was received, a total of 21551 scientific spectra have been identified, covering the period 2005 to 2010. These spectra correspond to ~6285 stars. The determination of the stellar parameters was carried out using the stellar parameterisation algorithm, MATISSE (MATrix Inversion for Spectral SynthEsis), which has been developed at OCA to be used in the analysis of large scale spectroscopic studies in galactic archaeology. An analysis pipeline has been constructed that integrates spectral reduction and radial velocity correction procedures with MATISSE in order to automatically determine the stellar parameters of the FEROS spectra. Stellar atmospheric parameters (Teff, log g, [M/H] and [alpha/Fe]) were determined for 6508 (30.2%) of the FEROS archived spectra (~3087 stars). Radial velocities were determined for 11963 (56%) of the archived spectra. 2370 (11%) spectra could not be analysed within the pipeline. 12673 spectra (58.8%) were analysed in the pipeline but their parameters were discarded based on quality criteria and error analysis determined within the automated process. The majority of these rejected spectra were found to have broad spectral features indicating that they may be hot and/or fast rotating stars, which are not considered within the adopted reference synthetic spectra grid of FGKM stars.Comment: 28 pages, 28 figures, 9 table

    Gaia Focused Product Release: Spatial distribution of two diffuse interstellar bands

    Full text link
    Diffuse interstellar bands (DIBs) are absorption features seen in optical and infrared spectra of stars that are probably caused by large and complex molecules in the ISM. Here we investigate the Galactic distribution and properties of two DIBs identified in almost six million stellar spectra collected by the Gaia Radial Velocity Spectrometer. These measurements constitute a part of the Gaia Focused Product Release to be made public between the Gaia DR3 and DR4 data releases. In order to isolate the DIB signal from the stellar features in each individual spectrum, we identified a set of 160 000 spectra at high Galactic latitudes which we consider to be the DIB-free reference sample. Matching each target spectrum to its closest reference spectra in stellar parameter space allowed us to remove the stellar spectrum empirically, without reference to stellar models, leaving a set of six million ISM spectra. Identifying the two DIBs at 862.1 nm and 864.8 nm in the stacked spectra, we modelled their shapes and report the depth, central wavelength, width, and equivalent width (EW) for each, along with confidence bounds on these measurements. Our main results are as follows: (1) the strength and spatial distribution of the DIB λ\lambda862.1 are very consistent with what was found in Gaia DR3, but for this work we attained a higher signal-to-noise ratio in the stacked spectra to larger distances, which allowed us to trace DIBs in the outer spiral arm and beyond the Scutum--Centaurus spiral arm; (2) we produced an all-sky map below ±65∘{\pm}65^{\circ} of Galactic latitude to ∼\sim4000 pc of both DIB features and their correlations; (3) we detected the signals of DIB\,λ\lambda862.1 inside the Local Bubble; and (4) there is a reasonable correlation with the dust reddening found from stellar absorption and EWs of both DIBs.Comment: 29 pages, accepted for publication in A&

    The cerium content of the Milky Way as revealed by Gaia DR3 GSP-Spec abundances

    Get PDF
    The recent Gaia Third Data Release contains a homogeneous analysis of millions of high-quality Radial Velocity Spectrometer (RVS) stellar spectra by the GSP-Spec module. This lead to the estimation of millions of individual chemical abundances and allows us to chemically map the Milky Way. Among the published GSP-Spec abundances, three heavy-elements produced by neutron-captures in stellar interiors can be found: Ce, Zr and Nd. We use a sample of about 30,000 LTE Ce abundances, selected after applying different combinations of GSP-Spec flags. Thanks to the Gaia DR3 astrometric data and radial velocities, we explore the cerium content in the Milky Way and, in particular, in its halo and disc components. The high quality of the Ce GSP-Spec abundances is quantified thanks to literature comparisons. We found a rather flat [Ce/Fe] versus [M/H] trend. We also found a flat radial gradient in the disc derived from field stars and, independently, from about 50 open clusters, in agreement with previous studies. The [Ce/Fe] vertical gradient has also been estimated. We also report an increasing [Ce/Ca] vs [Ca/H] in the disc, illustrating the late contribution of AGB with respect to SN II. Our cerium abundances in the disc, including the young massive population, are well reproduced by a new three-infall chemical evolution model. Among the halo population, the M 4 globular cluster is found to be enriched in cerium. Moreover, eleven stars with cerium abundances belonging to the Thamnos, Helmi Stream and Gaia-Sausage-Enceladus accreted systems were identified from chemo-dynamical diagnostics. We found that the Helmi Stream could be slightly underabundant in cerium, compared to the two other systems. This work illustrates the high quality of the GSP-Spec chemical abundances, that significantly contributes to unveil the heavy elements evolution history of the Milky Way.Comment: 15 pages, 10 figures, submitted to A&

    Solid confirmation of the broad DIB around 864.8 nm using stacked Gaia–RVS spectra

    Get PDF
    Context. Studies of the correlation between different diffuse interstellar bands (DIBs) are important for exploring their origins. However, the Gaia–RVS spectral window between 846 and 870 nm contains few DIBs, the strong DIB at 862 nm being the only convincingly confirmed one. / Aims. Here we attempt to confirm the existence of a broad DIB around 864.8 nm and estimate its characteristics using the stacked Gaia–RVS spectra of a large number of stars. We study the correlations between the two DIBs at 862 nm (λ862) and 864.8 nm (λ864.8), as well as the interstellar extinction. / Methods. We obtained spectra of the interstellar medium (ISM) absorption by subtracting the stellar components using templates constructed from real spectra at high Galactic latitudes with low extinctions. We then stacked the ISM spectra in Galactic coordinates (ℓ,  b) – pixelized by the HEALPix scheme – to measure the DIBs. The stacked spectrum is modeled by the profiles of the two DIBs, Gaussian for λ862 and Lorentzian for λ864.8, and a linear continuum. We report the fitted central depth (CD), central wavelength, equivalent width (EW), and their uncertainties for the two DIBs. / Results. We obtain 8458 stacked spectra in total, of which 1103 (13%) have reliable fitting results after applying numerous conservative filters. This work is the first of its kind to fit and measure λ862 and λ864.8 simultaneously in cool-star spectra. Based on these measurements, we find that the EWs and CDs of λ862 and λ864.8 are well correlated with each other, with Pearson coefficients (rp) of 0.78 and 0.87, respectively. The full width at half maximum (FWHM) of λ864.8 is estimated as 1.62 ± 0.33 nm which compares to 0.55 ± 0.06 nm for λ862. We also measure the vacuum rest-frame wavelength of λ864.8 to be λ0 = 864.53 ± 0.14 nm, smaller than previous estimates. / Conclusions. We find solid confirmation of the existence of the DIB around 864.8 nm based on an exploration of its correlation with λ862 and estimation of its FWHM. The DIB λ864.8 is very broad and shallow. That at λ862 correlates better with E(BP − RP) than λ864.8. The profiles of the two DIBs could strongly overlap with each other, which contributes to the skew of the λ862 profile

    Automatic stellar spectra parameterisation in the IR CaII triplet region

    Full text link
    (Abridged) Galactic archaeology aims to determine the evolution of the Galaxy from the chemical and kinematical properties of its stars. The analysis of current large spectroscopic surveys (thousands of stars) and future ones (millions of stars) require automated analysis techniques to obtain robust estimates of the stellar parameters. Several on-going and planned spectroscopic surveys have selected their wavelength region to contain the IR CaII triplet and this paper focuses on the automatic analysis of such spectra. We investigated two algorithms, MATISSE and DEGAS, both of which compare the observed spectrum to a grid of synthetic spectra, but each uses a different mathematical approach for finding the optimum match and hence the best stellar parameters. We identified degeneracies in different regions of the HR diagram: hot dwarfs and giants share the same spectral signatures. Furthermore, the surface gravity of cooler dwarfs is difficult to determine accurately. These effects are intensified when the information decreases (e.g. metal-poor stars or low SNR spectra). Our results show that the local projection method MATISSE is preferred for high SNR spectra, whereas the decision-tree method DEGAS is preferred for noisier spectra. We therefore propose a hybrid approach of both methods and show that sufficiently accurate results for the purposes of galactic archaeology are retrieved down to SNR~20 for typical thin or thick disc stars, and down to SNR~50 for the more metal-poor halo giants. If unappreciated, degeneracies in stellar parameters can introduce biases in derived quantities for target stars such as distances and full space motions. These biases can be minimised using the knowledge gained by thorough testing of the proposed algorithm, which in turn lead to robust automated methods for the coming extensive stellar spectroscopic surveys in the Local Group.Comment: 17 pages, 11 figures, accepted for publication in A&

    Gaia Focused Product Release: Asteroid orbital solution: Properties and assessment

    Get PDF
    CONTEXT: We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, which is not expected before the end of 2025. This data set covers more than one full orbital period for the vast majority of these asteroids. The orbital solutions are derived from the Gaia data alone over a relatively short arc compared to the observation history of many of these asteroids. AIMS: The work aims to produce orbital elements for a large set of asteroids based on 66 months of accurate astrometry provided by Gaia and to assess the accuracy of these orbital solutions with a comparison to the best available orbits derived from independent observations. A second validation is performed with accurate occultation timings. METHODS: We processed the raw astrometric measurements of Gaia to obtain astrometric positions of moving objects with 1D sub-mas accuracy at the bright end. For each asteroid that we matched to the data, an orbit fitting was attempted in the form of the best fit of the initial conditions at the median epoch. The force model included Newtonian and relativistic accelerations to derive the observation equations, which were solved with a linear least-squares fit. RESULTS: Orbits are provided in the form of state vectors in the International Celestial Reference Frame for 156 764 asteroids, including near-Earth objects, main-belt asteroids, and Trojans. For the asteroids with the best observations, the (formal) relative uncertainty σa/a is better than 10-10. Results are compared to orbits available from the Jet Propulsion Laboratory and MPC. Their orbits are based on much longer data arcs, but from positions of lower quality. The relative differences in semi-major axes have a mean of 5 × 10-10 and a scatter of 5 × 10-

    Gaia Focused Product Release: A catalogue of sources around quasars to search for strongly lensed quasars

    Full text link
    Context. Strongly lensed quasars are fundamental sources for cosmology. The Gaia space mission covers the entire sky with the unprecedented resolution of 0.180.18" in the optical, making it an ideal instrument to search for gravitational lenses down to the limiting magnitude of 21. Nevertheless, the previous Gaia Data Releases are known to be incomplete for small angular separations such as those expected for most lenses. Aims. We present the Data Processing and Analysis Consortium GravLens pipeline, which was built to analyse all Gaia detections around quasars and to cluster them into sources, thus producing a catalogue of secondary sources around each quasar. We analysed the resulting catalogue to produce scores that indicate source configurations that are compatible with strongly lensed quasars. Methods. GravLens uses the DBSCAN unsupervised clustering algorithm to detect sources around quasars. The resulting catalogue of multiplets is then analysed with several methods to identify potential gravitational lenses. We developed and applied an outlier scoring method, a comparison between the average BP and RP spectra of the components, and we also used an extremely randomised tree algorithm. These methods produce scores to identify the most probable configurations and to establish a list of lens candidates. Results. We analysed the environment of 3 760 032 quasars. A total of 4 760 920 sources, including the quasars, were found within 6" of the quasar positions. This list is given in the Gaia archive. In 87\% of cases, the quasar remains a single source, and in 501 385 cases neighbouring sources were detected. We propose a list of 381 lensed candidates, of which we identified 49 as the most promising. Beyond these candidates, the associate tables in this Focused Product Release allow the entire community to explore the unique Gaia data for strong lensing studies further.Comment: 35 pages, 60 figures, accepted for publication by Astronomy and Astrophysic
    • …
    corecore