379 research outputs found

    Troponin T Gene Switching Is Developmentally Regulated by Plasma-Borne Factors in Parabiotic Chicks

    Get PDF
    AbstractMyogenesis involves a conserved program of muscle gene isoform switching requiring the synchronized induction and repression of numerous muscle-specific gene family members. Central to understanding the regulation of this process are questions related to the origin and transmission of regulatory signals to the myofiber. We show here that troponin T gene switching can be precociously initiated by extrinsic blood-borne components but also requires other mechanisms that are regulated locally, intrinsically, or posttranscriptionally. We established a chimeric blood circulation by parabiosis between fetal chicks and quails to determine whether signals inducing earlier troponin T mRNA isoform switching in quails could be transduced to chick partners through the serum. While quail fetuses were unaffected by parabiosis, quail serum caused premature troponin T iso-mRNA switching in chick muscle, although initiation remained later than in quails. The onset of repression of a known innervation-dependent acetylcholine receptor mRNA did not coincide with the initiation of troponin T iso-mRNA switching and was not affected by parabiosis. These results support serum-borne factor regulation of isoform switching as an important and distinct mechanism relevant to understanding how extrinsic and intrinsic cues are integrated during muscle differentiation and development

    Identification of responsive cells in the developing somite supports a role for Β-catenin-dependent Wnt signaling in maintaining the DML myogenic progenitor pool

    Full text link
    Somitic Β-catenin is involved in both maintaining a stem cell population and controlling myogenic differentiation. It is unclear how Β-catenin-dependent Wnt signaling accomplishes these disparate roles. The present study shows that only dorsal cells in the early somite respond to Β-catenin-dependent Wnt signaling and as the somites compartmentalize to form the dermomyotome and myotome, responding cells are detected primarily in the dorsomedial lip (DML). Forced activation of Wnt target genes in DML cells prevents their progeny from entering the myotome, while blocking activation allows myotomal entry. This suggests a role for Β-catenin-dependent/Wnt signaling in maintaining progenitor cells in the DML and that if Β-catenin-dependent/Wnt signaling is required to induce myogenesis, the response is transitory and rapidly down-regulated. Developmental Dynamics 239:222–236, 2010. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64520/1/22098_ftp.pd

    Functional Myogenic Engraftment from Mouse iPS Cells

    Get PDF
    Direct reprogramming of adult fibroblasts to a pluripotent state has opened new possibilities for the generation of patient- and disease-specific stem cells. However the ability of induced pluripotent stem (iPS) cells to generate tissue that mediates functional repair has been demonstrated in very few animal models of disease to date. Here we present the proof of principle that iPS cells may be used effectively for the treatment of muscle disorders. We combine the generation of iPS cells with conditional expression of Pax7, a robust approach to derive myogenic progenitors. Transplantation of Pax7-induced iPS-derived myogenic progenitors into dystrophic mice results in extensive engraftment, which is accompanied by improved contractility of treated muscles. These findings demonstrate the myogenic regenerative potential of iPS cells and provide rationale for their future therapeutic application for muscular dystrophies

    α5β1 Integrin-Mediated Adhesion to Fibronectin Is Required for Axis Elongation and Somitogenesis in Mice

    Get PDF
    The arginine-glycine-aspartate (RGD) motif in fibronectin (FN) represents the major binding site for α5β1 and αvβ3 integrins. Mice lacking a functional RGD motif in FN (FNRGE/RGE) or α5 integrin develop identical phenotypes characterized by embryonic lethality and a severely shortened posterior trunk with kinked neural tubes. Here we show that the FNRGE/RGE embryos arrest both segmentation and axis elongation. The arrest is evident at about E9.0, corresponding to a stage when gastrulation ceases and the tail bud-derived presomitic mesoderm (PSM) induces α5 integrin expression and assumes axis elongation. At this stage cells of the posterior part of the PSM in wild type embryos are tightly coordinated, express somitic oscillator and cyclic genes required for segmentation, and form a tapered tail bud that extends caudally. In contrast, the posterior PSM cells in FNRGE/RGE embryos lost their tight associations, formed a blunt tail bud unable to extend the body axis, failed to induce the synchronised expression of Notch1 and cyclic genes and cease the formation of new somites. Mechanistically, the interaction of PSM cells with the RGD motif of FN is required for dynamic formation of lamellipodia allowing motility and cell-cell contact formation, as these processes fail when wild type PSM cells are seeded into a FN matrix derived from FNRGE/RGE fibroblasts. Thus, α5β1-mediated adhesion to FN in the PSM regulates the dynamics of membrane protrusions and cell-to-cell communication essential for elongation and segmentation of the body axis
    corecore