42 research outputs found

    Immunocytochemical characterisation of cultures of human bladder mucosal cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The functional role of the bladder urothelium has been the focus of much recent research. The bladder mucosa contains two significant cell types: urothelial cells that line the bladder lumen and suburothelial interstitial cells or myofibroblasts. The aims of this study were to culture these cell populations from human bladder biopsies and to perform immunocytochemical characterisation.</p> <p>Methods</p> <p>Primary cell cultures were established from human bladder biopsies (n = 10). Individual populations of urothelial and myofibroblast-like cells were isolated using magnetic activated cell separation (MACS). Cells were slow growing, needing 3 to 5 weeks to attain confluence.</p> <p>Results</p> <p>Cytokeratin 20 positive cells (umbrella cells) were isolated at primary culture and also from patients' bladder washings but these did not proliferate. In primary culture, proliferating cells demonstrated positive immunocytochemical staining to cytokeratin markers (AE1/AE3 and A0575) as well fibroblasts (5B5) and smooth muscle (αSMA) markers. An unexpected finding was that populations of presumptive urothelial and myofibroblast-like cells, isolated using the MACS beads, stained for similar markers. In contrast, staining for cytokeratins and fibroblast or smooth muscle markers was not co-localised in full thickness bladder sections.</p> <p>Conclusions</p> <p>Our results suggest that, in culture, bladder mucosal cells may undergo differentiation into a myoepithelial cell phenotype indicating that urothelial cells have the capacity to respond to environmental changes. This may be important pathologically but also suggests that studies of the physiological function of these cells in culture may not give a reliable indicator of human physiology.</p

    Altered Expression of Ano1 Variants in Human Diabetic Gastroparesis*

    No full text
    Diabetes affects many organs including the stomach. Altered number and function of interstitial cells of Cajal (ICC), the gastrointestinal pacemaker cells, underlie a number of gastrointestinal motility disorders, including diabetic gastroparesis. In the muscle layers, ICC selectively express Ano1, thought to underlie classical Ca2+-activated Cl− currents. Mice homozygous for Ano1 knock-out exhibit abnormal ICC function and motility. Several transcripts for Ano1 are generated by alternative splicing of four exons. Here, we report expression levels of transcripts encoded by alternative splicing of Ano1 gene in gastric muscles of patients with diabetic gastroparesis and nondiabetic control tissues. Expression of mRNA from two alternatively transcribed exons are significantly different between patients and controls. Furthermore, patients with diabetic gastroparesis express mRNA for a previously unknown variant of Ano1. The 5â€Č end of this novel variant lacks exons 1 and 2 and part of exon 3. Expression of this variant in HEK cells produces a decreased density of Ca2+-activated Cl− currents that exhibit slower kinetics compared with the full-length Ano1. These results identify important changes in expression and splicing of Ano1 in patients with diabetic gastroparesis that alter the electrophysiological properties of the channel. Changes in Ano1 expression in ICC may directly contribute to diabetic gastroparesis
    corecore