19 research outputs found
International fisheries threaten globally endangered sharks in the Eastern Tropical Pacific Ocean: the case of the Fu Yuan Yu Leng 999 reefer vessel seized within the Galápagos Marine Reserve
Shark fishing, driven by the fin trade, is the primary cause of global shark population declines. Here, we present a case study that exemplifies how industrial fisheries are likely depleting shark populations in the Eastern Tropical Pacific Ocean. In August 2017, the vessel Fu Yuan Yu Leng 999, of Chinese flag, was detained while crossing through the Galápagos Marine Reserve without authorization. This vessel contained 7639 sharks, representing one of the largest seizures recorded to date. Based on a sample of 929 individuals (12%), we found 12 shark species: 9 considered as Vulnerable or higher risk by the IUCN and 8 listed in CITES. Four species showed a higher proportion of immature than mature individuals, whereas size-distribution hints that at least some of the fishing ships associated with the operation may have been using purse-seine gear fishing equipment, which, for some species, goes against international conventions. Our data expose the magnitude of the threat that fishing industries and illegal trade represent to sharks in the Eastern Tropical Pacific Ocean
Leveraging natural history biorepositories as a global, decentralized, pathogen surveillance network
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic reveals a major gap in global biosecurity infrastructure: a lack of publicly available biological samples representative across space, time, and taxonomic diversity. The shortfall, in this case for vertebrates, prevents accurate and rapid identification and monitoring of emerging pathogens and their reservoir host(s) and precludes extended investigation of ecological, evolutionary, and environmental associations that lead to human infection or spillover. Natural history museum biorepositories form the backbone of a critically needed, decentralized, global network for zoonotic pathogen surveillance, yet this infrastructure remains marginally developed, underutilized, underfunded, and disconnected from public health initiatives. Proactive detection and mitigation for emerging infectious diseases (EIDs) requires expanded biodiversity infrastructure and training (particularly in biodiverse and lower income countries) and new communication pipelines that connect biorepositories and biomedical communities. To this end, we highlight a novel adaptation of Project ECHO’s virtual community of practice model: Museums and Emerging Pathogens in the Americas (MEPA). MEPA is a virtual network aimed at fostering communication, coordination, and collaborative problem-solving among pathogen researchers, public health officials, and biorepositories in the Americas. MEPA now acts as a model of effective international, interdisciplinary collaboration that can and should be replicated in other biodiversity hotspots. We encourage deposition of wildlife specimens and associated data with public biorepositories, regardless of original collection purpose, and urge biorepositories to embrace new specimen sources, types, and uses to maximize strategic growth and utility for EID research. Taxonomically, geographically, and temporally deep biorepository archives serve as the foundation of a proactive and increasingly predictive approach to zoonotic spillover, risk assessment, and threat mitigation
Mammal collections of the Western Hemisphere: A survey and directory of collections
As a periodic assessment of the mammal collection resource, the Systematic Collections Committee (SCC) of the American Society of Mammalogists undertakes decadal surveys of the collections held in the Western Hemisphere. The SCC surveyed 429 collections and compiled a directory of 395 active collections containing 5,275,155 catalogued specimens. Over the past decade, 43 collections have been lost or transferred and 38 new or unsurveyed collections were added. Growth in number of total specimens, expansion of genomic resource collections, and substantial gains in digitization and web accessibility were documented, as well as slight shifts in proportional representation of taxonomic groups owing to increasingly balanced geographic representation of collections relative to previous surveys. While we find the overall health of Western Hemisphere collections to be adequate in some areas, gaps in spatial and temporal coverage and clear threats to long-term growth and vitality of these resources have also been identified. Major expansion of the collective mammal collection resource along with a recommitment to appropriate levels of funding will be required to meet the challenges ahead for mammalogists and other users, and to ensure samples are broad and varied enough that unanticipated future needs can be powerfully addressed. © 2018 The Author(s)
Expert range maps of global mammal distributions harmonised to three taxonomic authorities
Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Fil: Marsh, Charles J.. Yale University; Estados UnidosFil: Sica, Yanina. Yale University; Estados UnidosFil: Burguin, Connor. University of New Mexico; Estados UnidosFil: Dorman, Wendy A.. University of Yale; Estados UnidosFil: Anderson, Robert C.. University of Yale; Estados UnidosFil: del Toro Mijares, Isabel. University of Yale; Estados UnidosFil: Vigneron, Jessica G.. University of Yale; Estados UnidosFil: Barve, Vijay. University Of Florida. Florida Museum Of History; Estados UnidosFil: Dombrowik, Victoria L.. University of Yale; Estados UnidosFil: Duong, Michelle. University of Yale; Estados UnidosFil: Guralnick, Robert. University Of Florida. Florida Museum Of History; Estados UnidosFil: Hart, Julie A.. University of Yale; Estados UnidosFil: Maypole, J. Krish. University of Yale; Estados UnidosFil: McCall, Kira. University of Yale; Estados UnidosFil: Ranipeta, Ajay. University of Yale; Estados UnidosFil: Schuerkmann, Anna. University of Yale; Estados UnidosFil: Torselli, Michael A.. University of Yale; Estados UnidosFil: Lacher, Thomas. Texas A&M University; Estados UnidosFil: Wilson, Don E.. National Museum of Natural History; Estados UnidosFil: Abba, Agustin Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Aguirre, Luis F.. Universidad Mayor de San Simón; BoliviaFil: Arroyo Cabrales, Joaquín. Instituto Nacional de Antropología E Historia, Mexico; MéxicoFil: Astúa, Diego. Universidade Federal de Pernambuco; BrasilFil: Baker, Andrew M.. Queensland University of Technology; Australia. Queensland Museum; AustraliaFil: Braulik, Gill. University of St. Andrews; Reino UnidoFil: Braun, Janet K.. Oklahoma State University; Estados UnidosFil: Brito, Jorge. Instituto Nacional de Biodiversidad; EcuadorFil: Busher, Peter E.. Boston University; Estados UnidosFil: Burneo, Santiago F.. Pontificia Universidad Católica del Ecuador; EcuadorFil: Camacho, M. Alejandra. Pontificia Universidad Católica del Ecuador; EcuadorFil: de Almeida Chiquito, Elisandra. Universidade Federal do Espírito Santo; BrasilFil: Cook, Joseph A.. University of New Mexico; Estados UnidosFil: Cuéllar Soto, Erika. Sultan Qaboos University; OmánFil: Davenport, Tim R. B.. Wildlife Conservation Society; TanzaniaFil: Denys, Christiane. Muséum National d'Histoire Naturelle; FranciaFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Eldridge, Mark D. B.. Australian Museum; AustraliaFil: Fernandez Duque, Eduardo. University of Yale; Estados UnidosFil: Francis, Charles M.. Environment And Climate Change Canada; CanadáFil: Frankham, Greta. Australian Museum; AustraliaFil: Freitas, Thales. Universidade Federal do Rio Grande do Sul; BrasilFil: Friend, J. Anthony. Conservation And Attractions; AustraliaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Gursky-Doyen, Sharon. Texas A&M University; Estados UnidosFil: Hackländer, Klaus. Universitat Fur Bodenkultur Wien; AustriaFil: Hawkins, Melissa. National Museum of Natural History; Estados UnidosFil: Helgen, Kristofer M.. Australian Museum; AustraliaFil: Heritage, Steven. University of Duke; Estados UnidosFil: Hinckley, Arlo. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Holden, Mary. American Museum of Natural History; Estados UnidosFil: Holekamp, Kay E.. Michigan State University; Estados UnidosFil: Humle, Tatyana. University Of Kent; Reino UnidoFil: Ibáñez Ulargui, Carlos. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Jackson, Stephen M.. Australian Museum; AustraliaFil: Janecka, Mary. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Jenkins, Paula. Natural History Museum; Reino UnidoFil: Juste, Javier. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Leite, Yuri L. R.. Universidade Federal do Espírito Santo; BrasilFil: Novaes, Roberto Leonan M.. Universidade Federal do Rio de Janeiro; BrasilFil: Lim, Burton K.. Royal Ontario Museum; CanadáFil: Maisels, Fiona G.. Wildlife Conservation Society; Estados UnidosFil: Mares, Michael A.. Oklahoma State University; Estados UnidosFil: Marsh, Helene. James Cook University; AustraliaFil: Mattioli, Stefano. Università degli Studi di Siena; ItaliaFil: Morton, F. Blake. University of Hull; Reino UnidoFil: Ojeda, Agustina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Ordóñez Garza, Nicté. Instituto Nacional de Biodiversidad; EcuadorFil: Pardiñas, Ulises Francisco J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; ArgentinaFil: Pavan, Mariana. Universidade de Sao Paulo; BrasilFil: Riley, Erin P.. San Diego State University; Estados UnidosFil: Rubenstein, Daniel I.. University of Princeton; Estados UnidosFil: Ruelas, Dennisse. Museo de Historia Natural, Lima; PerúFil: Schai-Braun, Stéphanie. Universitat Fur Bodenkultur Wien; AustriaFil: Schank, Cody J.. University of Texas at Austin; Estados UnidosFil: Shenbrot, Georgy. Ben Gurion University of the Negev; IsraelFil: Solari, Sergio. Universidad de Antioquia; ColombiaFil: Superina, Mariella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Tsang, Susan. American Museum of Natural History; Estados UnidosFil: Van Cakenberghe, Victor. Universiteit Antwerp; BélgicaFil: Veron, Geraldine. Université Pierre et Marie Curie; FranciaFil: Wallis, Janette. Kasokwa-kityedo Forest Project; UgandaFil: Whittaker, Danielle. Michigan State University; Estados UnidosFil: Wells, Rod. Flinders University.; AustraliaFil: Wittemyer, George. State University of Colorado - Fort Collins; Estados UnidosFil: Woinarski, John. Charles Darwin University; AustraliaFil: Upham, Nathan S.. University of Yale; Estados UnidosFil: Jetz, Walter. University of Yale; Estados Unido
Expert range maps of global mammal distributions harmonised to three taxonomic authorities
AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control
Sorex salvini Merriam 1897
<i>Sorex salvini</i> Merriam, 1897 <p>Salvin’s Shrew</p> <p> <i>Sorex salvini</i> Merriam, 1897:229. Type locality: “Calel, Totonicapan [sic], Guatemala (alt., 10200 ft. = 3100 meters).”</p> <p> <i>Sorex godmani</i> Merriam, 1897:229. Type locality: “Volcano Santa Maria, Quezaltenango [sic], Guatemala (alt., 9000 ft. = 2740 meters).</p> <p> <i>Sorex saussurei godmani</i>: Jackson, 1928:158</p> <p> <i>Sorex saussurei salvini</i>: Jackson, 1928: 159</p> <p> <i>Sorex salvini</i>: Woodman <i>et al.</i> 2012: 214</p> <p> <b>Holotype.</b> Number 77035, U. S. Nat. Mus., Biological Survey Collection; adult, female, skin and skull; collected January 12, 1896, by E. W. Nelson and E. A. Goldman, original number 9 0 57.</p> <p> <b>Distribution.</b> Highlands of northwestern, central, and eastern Guatemala.</p> <p> <b>Diagnosis.</b> <i>Sorex salvini</i> is a member of the <i>Sorex salvini</i> species group. It is the largest of this species group in body measurements (except for <i>S. sclateri</i>), but is intermediate in skull size (Table 1). The color of the dorsum is more gray/brown than in <i>S. cristobalensis</i>, about the same color below; tail is gray/brown above, slightly paler below. Specimens from Yaiquich, Huehuetenango, are more chocolate brown, as is a topotype (USNM 77071). U3 is usually taller than U4, but the type specimen has U3 = U4.</p> <p> <b>Description.</b> The body size of <i>S. salvini</i> averages larger than in <i>S. cristobalensis, S. mccarthyi</i>, or <i>S. stizodon</i>, but smaller than <i>S. sclateri</i>. The skull averages smaller in most measurements than in <i>S. cristobalensis</i> or <i>S. sclateri</i>, but larger than in <i>S. mccarthyi</i> or <i>S. stizodon</i>. Sorex salvini has a relatively short mandible, longer toothrow, and shorter rostrum compared to <i>S. cristobalensis</i> and <i>S. mccarthy</i> i.</p> <p> <b>Ecology.</b> <i>Sorex salvini</i> is found in broad-leaved and coniferous cloud forests of Alta Verapaz, Huehuetenango, Quetzaltenango, and Totonicapán. Depending upon the mountain range, known small mammal associates include <i>Cryptotis mam, C. lasertosus, C. oreoryctes, Habromys lophurus, Handleyomys saturatior, Heteromys desmarestianus, Marmosa mexicana, Microtus guatemalensis, Nyctomys sumichrasti, Oligoryzomys fulvescens, Peromyscus beatae, P. grandis, P. guatemalensis, P. mayensis, Reithrodontomys microdon, R. sumichrasti, R. tenuirostris, Scotinomys teguina</i>, and <i>Sorex veraepacis</i> (Carleton & Huckaby 1975; Woodman 2010, Woodman 2011b; Matson <i>et al.</i> 2014). Nothing is known about its reproductive habits.</p> <p> <b>Specimens examined (14).</b> Guatemala, Alta Verapaz: Finca Chinaux, Campamento de los Helechos, 2040 m (CM 120109 – 120110); Huehuetenango: San Mateo Ixtatán, Cerro Bobí (USAC 26); San Mateo Ixtatán, Aldea Chiloala Zum (USAC 27); Todos Santos (USNM 77023); Yiaquich, 4 km NW Sta Eulalia, San Mateo Ixtatán, 2950 m (UMMZ 117849–117850); Quiche: Chimel Grande, 12.6 km N, 9 km E Uspantan, 2490 m, 15.46208 N, 90.78811 W (MVZ 226939); Quetzaltenango: Volcán Santa María 9000 ft. (USNM 77044–77046); 4 km SE Zunil (Finca la Chingada) 2720 m (USNM 569591); Totonicapán, Calel, 10,200 ft. (USNM 77035, 77071).</p>Published as part of <i>Matson, John O. & Ordóñez-Garza, Nicté, 2017, The taxonomic status of Long-tailed shrews (Mammalia: genus Sorex) from Nuclear Central America, pp. 461-483 in Zootaxa 4236 (3)</i> on page 476, DOI: 10.11646/zootaxa.4236.3.3, <a href="http://zenodo.org/record/322258">http://zenodo.org/record/322258</a>
Sorex cristobalensis Jackson 1925
<i>Sorex cristobalensis</i> Jackson, 1925 <p>Cristobal Shrew</p> <p> <i>Sorex saussurei cristobalensis</i> Jackson, 1925: 129. Type locality: “San Cristobal, altitude 8,400 feet, State of Chiapas, Mexico.” <i>Sorex veraecrucis cristobalensis</i>: Carraway, 2007: 62.</p> <p> <i>Sorex salvini cristobalensis</i>: Ramírez-Pulido <i>et al.</i> 2014: 48</p> <p> <b>Holotype.</b> Number 75883, U. S. National Museum, Biological Survey Collection; adult female, skin and skull; taken September 19, 1895, by E. W. Nelson and E. A. Goldman, original number 8429. Measurements for the holotype are: Tot, 116; Tail, 46.5; HF, 13.5; CBL17.8; GLS, 18.4; LR, 7.43; PL, 7.88; LUT, 2.63; LMT, 4.73; CB, 8.43; widWM2, 4.93; LIB, 3.79; CD, 5.33; LM, 7.32; HC, 3.55. The type specimen has the U3 is subequal in size to the 4th.</p> <p> <b>Distribution.</b> Known from three localities in Chiapas, México, (Carraway 2007; Hall 1981).</p> <p> <b>Diagnosis.</b> <i>Sorex cristobalensis</i> is a member of the <i>Sorex salvini</i> species group. It is the largest of the species group south of the Isthmus of Tehuantepec (Table 1). The color of the pelage is a dull Clove Brown above, slightly paler ventrally, tail slightly bicolor. Specimens from near El Triunfo, Chiapas, have a more reddish brown dorsum. Usually, U3 is taller than U4.</p> <p> <b>Description.</b> <i>Sorex cristobalensis</i> averages larger in most skull measurements compared to <i>S. salvini</i> (Table 1). The <i>S. cristobalensis</i> has a relatively wider and longer rostrum than <i>S. salvini</i>. Compared to the new species from Honduras, <i>S. cristobalensis</i> has a greater maxillary toothrow length. <i>Sorex cristobalensis</i> has a much longer rostrum than <i>S. stizodon</i>. It is smaller in all measurements than <i>S. sclateri.</i></p> <p> <b>Ecology.</b> <i>Sorex cristobalensis</i> is high elevation species. Carraway (2007) reviewed the ecology. Reproductive information is lacking.</p> <p> <b>Specimens examined (5).</b> México Chiapas: El Triunfo, 10 km SSE Finca Prusia, ca. 1900 m (LACM 74152– 74154); 9 mi S.E., 10 mi N.E. Tonalá (on tag); modified by Carraway (2007:62) to “ 9 mi SE Tonalá (to vicinity of Finca Ocuilapa), then approximately 10 mi (by trail) NE of that point (LACM 18709)”, not shown on map, Figure 1; San Cristóbal, 8400 ft (USNM 75883).</p>Published as part of <i>Matson, John O. & Ordóñez-Garza, Nicté, 2017, The taxonomic status of Long-tailed shrews (Mammalia: genus Sorex) from Nuclear Central America, pp. 461-483 in Zootaxa 4236 (3)</i> on page 475, DOI: 10.11646/zootaxa.4236.3.3, <a href="http://zenodo.org/record/322258">http://zenodo.org/record/322258</a>
Sorex stizodon Merriam 1895
<i>Sorex stizodon</i> Merriam, 1895 <p>Pale-toothed Shrew</p> <p> <i>Sorex stizodon</i> Merriam, 1895:98. Type locality “ San Cristobal, Chiapas, Mexico ”.</p> <p> <b>Holotype.</b> Number 75885, U. S. Nat. Mus., Biological Survey Collection, adult female, skin and skull, collected September 25, 1895 by E. W. Nelson and E. A. Goldman, original number 8473.</p> <p> <b>Distribution.</b> Known only from the type locality, at 9000 ft elevation.</p> <p> <b>Diagnosis.</b> Smallest <i>Sorex</i> in NCA. Color of dorsum is rusty brown to reddish brown, venter slightly paler. U3 <U4. Pigment of teeth not the usual red color for <i>Sorex</i>, instead it is pale light orange to yellowish. Brain case slightly inflated with a short rostrum.</p> <p> <b>Description.</b> Measurements for the holotype (and only specimen) of <i>Sorex stizodon</i> are: TOT 107; Tail 41, HF 153.5; CBL 17.5, GLS 17.9, LR 5.6, LP 6.0, LUT 2.0, LMT 3.5, CB 8.9, WM2 4.2, LIB, 3.4, DB 5.8, LM 5.8, HC 3.1. Compared to other members of the <i>S. salvini</i> group, <i>S. stizodon</i> is absolutely small in all measurements. It has a relatively inflated cranium relative to cranial length.</p> <p> <b>Ecology.</b> Reviewed by Carraway (2007).</p> <p> <b>Specimens examined (1).</b> Mexico, Chiapas: San Cristóbal, 9000 ft. (Examined and measured by Neal Woodman).</p>Published as part of <i>Matson, John O. & Ordóñez-Garza, Nicté, 2017, The taxonomic status of Long-tailed shrews (Mammalia: genus Sorex) from Nuclear Central America, pp. 461-483 in Zootaxa 4236 (3)</i> on page 477, DOI: 10.11646/zootaxa.4236.3.3, <a href="http://zenodo.org/record/322258">http://zenodo.org/record/322258</a>
Sorex sclateri Merriam 1897
<i>Sorex sclateri</i> Merriam, 1897 <p>Sclater’s Shrew</p> <p> <i>Sorex sclateri</i> Merriam, 1897:228. Type locality “ Tumbala, Chiapas, Mexico (alt., 5000 ft.)” <i>Sorex Sclateri</i> Trouessart, 1898:1287.</p> <p> <b>Holotype.</b> Number 75872, U. S. Nat. Mus., Biological Survey Collection, adult, female, skin and skull; collected October 28, 1895, by E. W. Nelson and E. A. Goldman, original number 8567.</p> <p> <b>Distribution.</b> Known only from two localities in Chiapas, Mexico (Carraway 2007).</p> <p> <b>Diagnosis.</b> <i>Sorex sclateri</i> is the largest member of the <i>S. salvini</i> species group. It is as large as most species in the <i>S. veraepacis</i> species group. U3> U 4 in three of four specimens, U3 = U 4 in one individual. Color is a dark brown above slightly paler below, tail as in body.</p> <p> <b>Description.</b> <i>Sorex sclateri</i> has a longer mandible and relatively less inflated cranium than <i>S. cristobalensis</i>, <i>S. salvini</i>, <i>S. stizodon</i>, or the undescribed species from Honduras. Average body measurements for four specimens (three topotypes and type) are: TOT 124; Tail 52, HF 15.9. Average skull measurements for three specimens (two topotypes and type) are: CBL 19.5, GLS 19.8, LR 8.2, PL 7.9, LUT 3.0, LMT 4.9, CB 9.1, WM2 4.9, LIB, 4.4, DB 5.7, LM 8.3, HC 3.0. <i>Sorex sclateri</i> pelage color is dark brown compared to species in the <i>S. veraepacis</i> species group, which are gray to black.</p> <p> <b>Ecology.</b> Summarized by Carraway (2007), no new information available.</p> <p> <b>Specimens examined</b> (4). Mexico, Chiapas: Tumbalá, 5000 ft. (USNM 75871–75874).</p> <p> <b>Additional records.</b> Mexico, Chiapas: San Antonio Buenavista (Carraway 2007).</p>Published as part of <i>Matson, John O. & Ordóñez-Garza, Nicté, 2017, The taxonomic status of Long-tailed shrews (Mammalia: genus Sorex) from Nuclear Central America, pp. 461-483 in Zootaxa 4236 (3)</i> on pages 476-477, DOI: 10.11646/zootaxa.4236.3.3, <a href="http://zenodo.org/record/322258">http://zenodo.org/record/322258</a>