679 research outputs found

    Face Recognition Methods Based on Feedforward Neural Networks, Principal Component Analysis and Self-Organizing Map

    Get PDF
    In this contribution, human face as biometric is considered. Original method of feature extraction from image data is introduced using MLP (multilayer perceptron) and PCA (principal component analysis). This method is used in human face recognition system and results are compared to face recognition system using PCA directly, to a system with direct classification of input images by MLP and RBF (radial basis function) networks, and to a system using MLP as a feature extractor and MLP and RBF networks in the role of classifier. Also a two-stage method for face recognition is presented, in which Kohonen self-organizing map is used as a feature extractor. MLP and RBF network are used as classifiers. In order to obtain deeper insight into presented methods, also visualizations of internal representation of input data obtained by neural networks are presented

    Error Concealment using Neural Networks for Block-Based Image Coding

    Get PDF
    In this paper, a novel adaptive error concealment (EC) algorithm, which lowers the requirements for channel coding, is proposed. It conceals errors in block-based image coding systems by using neural network. In this proposed algorithm, only the intra-frame information is used for reconstruction of the image with separated damaged blocks. The information of pixels surrounding a damaged block is used to recover the errors using the neural network models. Computer simulation results show that the visual quality and the MSE evaluation of a reconstructed image are significantly improved using the proposed EC algorithm. We propose also a simple non-neural approach for comparison

    DDG-1000 missile integration: a case study

    Get PDF
    This thesis is a case study that examines missile development and integration for the DDG-1000 program. In particular, it analyzes various programmatic decisions through the lens of systems engineering standards, articles in scholarly journals, established government acquisition guidelines, and case studies of government and commercial engineering projects. Four risks were identified. First, failure to establish top-level requirements that reflect DDG- 1000 specific needs introduces the potential for the missiles to fail performance or safety evaluations. Second, late requirement changes imposed by the government increase the potential for costly rework and schedule delays if integration issues surface during testing. Third, a use as is decision (meaning that legacy missile requirements were applied to the DDG-1000 missile effort) could result in an inadequate system architecture and/or late identification of system incompatibilities. Finally, organizational and funding issues have hampered the establishment and efficiency of engineering change control and integration management. The thesis recommends: that DOD acquisitions continue to emphasize and enable rigorous application of system engineering early in the acquisitions process; that all programs perform a thorough flow-down of requirements even if utilizing legacy systems; and that all funding for weapon development be placed in the control of the Program Executive Office for Integrated Warfare Systems.http://archive.org/details/ddgmissileintegr1094541425Lieutenant Commander, United States NavyApproved for public release; distribution is unlimited

    Bone health assessment via digital wrist tomosynthesis in the mammography setting

    Get PDF
    Bone fractures attributable to osteoporosis are a significant problem. Though preventative treatment options are available for individuals who are at risk of a fracture, a substantial number of these individuals are not identified due to lack of adherence to bone screening recommendations. The issue is further complicated as standard diagnosis of osteoporosis is based on bone mineral density (BMD) derived from dual energy x-ray absorptiometry (DXA), which, while helpful in identifying many at risk, is limited in fully predicting risk of fracture. It is reasonable to expect that bone screening would become more prevalent and efficacious if offered in coordination with digital breast tomosynthesis (DBT) exams, provided that osteoporosis can be assessed using a DBT modality. Therefore, the objective of the current study was to explore the feasibility of using digital tomosynthesis imaging in a mammography setting. To this end, we measured density, cortical thickness and microstructural properties of the wrist bone, correlated these to reference measurements from microcomputed tomography and DXA, demonstrated the application in vivo in a small group of participants, and determined the repeatability of the measurements. We found that measurements from digital wrist tomosynthesis (DWT) imaging with a DBT scanner were highly repeatable ex vivo (error = 0.05%-9.62%) and in vivo (error = 0.06%-10.2%). In ex vivo trials, DWT derived BMDs were strongly correlated with reference measurements (R = 0.841-0.980), as were cortical thickness measured at lateral and medial cortices (R = 0.991 and R = 0.959, respectively) and the majority of microstructural measures (R = 0.736-0.991). The measurements were quick and tolerated by human patients with no discomfort, and appeared to be different between young and old participants in a preliminary comparison. In conclusion, DWT is feasible in a mammography setting, and informative on bone mass, cortical thickness, and microstructural qualities that are known to deteriorate in osteoporosis. To our knowledge, this study represents the first application of DBT for imaging bone. Future clinical studies are needed to further establish the efficacy for diagnosing osteoporosis and predicting risk of fragility fracture using DWT

    The transgenerational effects of solar short-UV radiation differed in two accessions of Vicia faba L. from contrasting UV environments

    Get PDF
    Background and aims: UVB radiation can rapidly induce gene regulation leading to cumulative changes for plant physiology and morphology. We hypothesized that a transgenerational effect of chronic exposure to solar short UV modulates the offspring's responses to UVB and blue light, and that the transgenerational effect is genotype dependent. Methods: We established a factorial experiment combining two Vicia faba L. accessions, two parental UV treatments (full sunlight and exclusion of short UV, 290-350 nm), and four offspring light treatments from the factorial combination of UVB and blue light. The accessions were Aurora from southern Sweden, and ILB938 from Andean region of Colombia and Ecuador. Key results: The transgenerational effect influenced morphological responses to blue light differently in the two accessions. In Aurora, when UVB was absent, blue light increased shoot dry mass only in plants whose parents were protected from short UV. In ILB938, blue light increased leaf area and shoot dry mass more in plants whose parents were exposed to short UV than those that were not. Moreover, when the offspring was exposed to UVB, the transgenerational effect decreased in ILB938 and disappeared in Aurora. For flavonoids, the transgenerational effect was detected only in Aurora: parental exposure to short UV was associated with a greater induction of total quercetin in response to UVB. Transcript abundance was higher in Aurora than in ILB938 for both CHALCONE SYNTHASE (99-fold) and DON-GLUCOSYLTRANSFERASE 1 (19-fold). Conclusions: The results supported both hypotheses. Solar short UV had transgenerational effects on progeny responses to blue and UVB radiation, and they differed between the accessions. These transgenerational effects could be adaptive by acclimation of slow and cumulative morphological change, and by early build-up of UV protection through flavonoid accumulation on UVB exposure. The differences between the two accessions aligned with their adaptation to contrasting UV environments.Peer reviewe

    Asymmetric Image Encryption Approach with Plaintext-Related Diffusion

    Get PDF
    This paper deals with topic of image encryption based on chaotic maps. A solution which has advantage of robustness against chosen-plaintext attacks is proposed. Permutations of image pixels are carried out in a way that enables operations on grayscale images with arbitrary resolution. All calculations done with user key and also all diffusion processes employ the same chaotic map. This feature enables usage of look-up tables which reduce computational times. The paper includes several experiments which verify achieved results and also briefly describes advantages and drawbacks of proposed solution

    Similar local, but different systemic, metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth

    Get PDF
    ABSTRACT Plants respond locally and systemically to herbivore attack. Most of the research conducted on plant-herbivore relationships at element and molecular levels have focused on the elemental composition or/and certain molecular compounds or specific families of defence metabolites showing that herbivores tend to select plant individuals or species with higher nutrient concentrations and avoid those with higher levels of defence compounds. We performed stoichiometric and metabolomics, both local and systemic, analyses in two subspecies of Pinus sylvestris under attack from caterpillars of the pine processionary moth, an important pest in the Mediterranean Basin. Both pine subspecies responded locally to folivory mainly by increasing relative concentrations of terpenes and some phenolics. Systemic responses differed between pine subspecies, and most of the metabolites presented intermediate concentrations between those of the affected parts and unattacked trees. Our results support the hypothesis that foliar nutrient concentrations are not a key factor for plant selection by adult female processionary moths for oviposition, since folivory was not associated with any of the elements analysed. Phenolic compounds generally did not increase in the attacked trees, questioning the suggestion of induction of phenolics following folivory attack and the anti-feeding properties of phenolics. Herbivory attack produced a general systemic shift in pines, in both primary and secondary metabolism, which was less intense and chemically different from the local responses. Local pine responses were similar between pine subspecies, while systemic responses were more distant

    Similar local, but different systemic, metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth

    Get PDF
    ABSTRACT Plants respond locally and systemically to herbivore attack. Most of the research conducted on plant-herbivore relationships at element and molecular levels have focused on the elemental composition or/and certain molecular compounds or specific families of defence metabolites showing that herbivores tend to select plant individuals or species with higher nutrient concentrations and avoid those with higher levels of defence compounds. We performed stoichiometric and metabolomics, both local and systemic, analyses in two subspecies of Pinus sylvestris under attack from caterpillars of the pine processionary moth, an important pest in the Mediterranean Basin. Both pine subspecies responded locally to folivory mainly by increasing relative concentrations of terpenes and some phenolics. Systemic responses differed between pine subspecies, and most of the metabolites presented intermediate concentrations between those of the affected parts and unattacked trees. Our results support the hypothesis that foliar nutrient concentrations are not a key factor for plant selection by adult female processionary moths for oviposition, since folivory was not associated with any of the elements analysed. Phenolic compounds generally did not increase in the attacked trees, questioning the suggestion of induction of phenolics following folivory attack and the anti-feeding properties of phenolics. Herbivory attack produced a general systemic shift in pines, in both primary and secondary metabolism, which was less intense and chemically different from the local responses. Local pine responses were similar between pine subspecies, while systemic responses were more distant

    Coping with iron limitation : a metabolomic study of Synechocystis sp. PCC 6803

    Get PDF
    Iron (Fe) is a key element for all living systems, especially for photosynthetic organisms because of its important role in the photosynthetic electron transport chain. Fe limitation in cyanobacteria leads to several physiological and morphological changes. However, the overall metabolic responses to Fe limitation are still poorly understood. In this study, we integrated elemental, stoichiometric, macromolecular, and metabolomic data to shed light on the responses of Synechocystis sp. PCC 6803, a non-N2-fixing freshwater cyanobacterium, to Fe limitation. Compared to Synechocystis growing at nutrient replete conditions, Fe-limited cultures had lower growth rates and amounts of chlorophyll a, RNA, RNA:DNA, C, N, and P, and higher ratios of protein:RNA, C:N, C:P, and N:P, in accordance with the growth rate hypothesis which predicts faster growing organisms will have decreased biomass RNA contents and C:P and N:P ratios. Fe-limited Synechocystis had lower amounts Fe, Mn, and Mo, and higher amount of Cu. Several changes in amino acids of cultures growing under Fe limitation suggest nitrogen limitation. In addition, we found substantial increases in stress-related metabolites in Fe-limited cyanobacteria such antioxidants. This study represents an advance in understanding the stoichiometric, macromolecular, and metabolic strategies that cyanobacteria use to cope with Fe limitation. This information, moreover, may further understanding of changes in cyanobacterial functions under scenarios of Fe limitation in aquatic ecosystems
    corecore