361 research outputs found

    Connection between charge transfer and alloying core-level shifts based on density-functional calculations

    Full text link
    The measurement of alloying core-level binding energy (CLBE) shifts has been used to give a precise meaning to the fundamental concept of charge transfer. Here, ab-initio density-functional calculations for the intermetallic compound MgAu are used to investigate models which try to make a connection between the core levels shifts and charge transfer. The calculated CLBE shifts agree well with experiment, and permit an unambiguous separation into initial-state and screening contributions. Interestingly, the screening contribution is large and cannot be neglected in any reasonable description. Comparison of the calculated results with the predictions of simple models show that these models are not adequate to describe the realistic situation. On the positive side, the accuracy of the density-functional calculations indicates that the combination of experiments with such calculations is a powerful tool to investigate unknown systems.Comment: RevTeX 10 pages incl 8 figure

    Negative Temperature States in the Discrete Nonlinear Schroedinger Equation

    Get PDF
    We explore the statistical behavior of the discrete nonlinear Schroedinger equation. We find a parameter region where the system evolves towards a state characterized by a finite density of breathers and a negative temperature. Such a state is metastable but the convergence to equilibrium occurs on astronomical time scales and becomes increasingly slower as a result of a coarsening processes. Stationary negative-temperature states can be experimentally generated via boundary dissipation or from free expansions of wave packets initially at positive temperature equilibrium.Comment: 4 pages, 5 figure

    Coupled-mode theory for photonic band-gap inhibition of spatial instabilities

    Get PDF
    We study the inhibition of pattern formation in nonlinear optical systems using intracavity photonic crystals. We consider mean-field models for singly and doubly degenerate optical parametric oscillators. Analytical expressions for the new (higher) modulational thresholds and the size of the "band gap" as a function of the system and photonic crystal parameters are obtained via a coupled-mode theory. Then, by means of a nonlinear analysis, we derive amplitude equations for the unstable modes and find the stationary solutions above threshold. The form of the unstable mode is different in the lower and upper parts of the band gap. In each part there is bistability between two spatially shifted patterns. In large systems stable wall defects between the two solutions are formed and we provide analytical expressions for their shape. The analytical results are favorably compared with results obtained from the full system equations. Inhibition of pattern formation can be used to spatially control signal generation in the transverse plane

    Polarization coupling and pattern selection in a type-II optical parametric oscillator

    Get PDF
    We study the role of a direct intracavity polarization coupling in the dynamics of transverse pattern formation in type-II optical parametric oscillators. Transverse intensity patterns are predicted from a stability analysis, numerically observed, and described in terms of amplitude equations. Standing wave intensity patterns for the two polarization components of the field arise from the nonlinear competition between two concentric rings of unstable modes in the far field. Close to threshold a wavelength is selected leading to standing waves with the same wavelength for the two polarization components. Far from threshold the competition stabilizes patterns in which two different wavelengths coexist.Comment: 14 figure

    Inhibited Al diffusion and growth roughening on Ga-coated Al (100)

    Full text link
    Ab initio calculations indicate that the ground state for Ga adsorption on Al (100) is on-surface with local unit coverage. On Ga-coated Al (100), the bridge diffusion barrier for Al is large, but the Al\rightarrowGa {\it exchange barrier is zero}: the ensuing incorporation of randomly deposited Al's into the Ga overlayer realizes a percolation network, efficiently recoated by Ga atoms. Based on calculated energetics, we predict rough surface growth at all temperatures; modeling the growth by a random deposition model with partial relaxation, we find a power-law divergent roughness wt0.07±0.02w\sim t^{\,0.07\pm0.02}.Comment: 4 pages RevTeX-twocolumn, no figures. to appear in Phys. Rev. Lett., July 199

    Optical pattern formation with a 2-level nonlinearity

    Get PDF
    We present an experimental and theoretical investigation of spontaneous pattern formation in the transverse section of a single retro-reflected laser beam passing through a cloud of cold Rubidium atoms. In contrast to previously investigated systems, the nonlinearity at work here is that of a 2-level atom, which realizes the paradigmatic situation considered in many theoretical studies of optical pattern formation. In particular, we are able to observe the disappearance of the patterns at high intensity due to the intrinsic saturable character of 2-level atomic transitions.Comment: 5 pages, 4 figure

    Statistical regimes of random laser fluctuations

    Get PDF
    Statistical fluctuations of the light emitted from amplifying random media are studied theoretically and numerically. The characteristic scales of the diffusive motion of light lead to Gaussian or power-law (Levy) distributed fluctuations depending on external control parameters. In the Levy regime, the output pulse is highly irregular leading to huge deviations from a mean--field description. Monte Carlo simulations of a simplified model which includes the population of the medium, demonstrate the two statistical regimes and provide a comparison with dynamical rate equations. Different statistics of the fluctuations helps to explain recent experimental observations reported in the literature.Comment: Revised version, resubmitted to Physical Review

    Polarisation Patterns and Vectorial Defects in Type II Optical Parametric Oscillators

    Get PDF
    Previous studies of lasers and nonlinear resonators have revealed that the polarisation degree of freedom allows for the formation of polarisation patterns and novel localized structures, such as vectorial defects. Type II optical parametric oscillators are characterised by the fact that the down-converted beams are emitted in orthogonal polarisations. In this paper we show the results of the study of pattern and defect formation and dynamics in a Type II degenerate optical parametric oscillator for which the pump field is not resonated in the cavity. We find that traveling waves are the predominant solutions and that the defects are vectorial dislocations which appear at the boundaries of the regions where traveling waves of different phase or wave-vector orientation are formed. A dislocation is defined by two topological charges, one associated with the phase and another with the wave-vector orientation. We also show how to stabilize a single defect in a realistic experimental situation. The effects of phase mismatch of nonlinear interaction are finally considered.Comment: 38 pages, including 15 figures, LATeX. Related material, including movies, can be obtained from http://www.imedea.uib.es/Nonlinear/research_topics/OPO

    Optomechanical self-structuring in cold atomic gases

    Full text link
    The rapidly developing field of optomechanics aims at the combined control of optical and mechanical (solid-state or atomic) modes. In particular, laser cooled atoms have been used to exploit optomechanical coupling for self-organization in a variety of schemes where the accessible length scales are constrained by a combination of pump modes and those associated to a second imposed axis, typically a cavity axis. Here, we consider a system with many spatial degrees of freedom around a single distinguished axis, in which two symmetries - rotations and translations in the plane orthogonal to the pump axis - are spontaneously broken. We observe the simultaneous spatial structuring of the density of a cold atomic cloud and an optical pump beam. The resulting patterns have hexagonal symmetry. The experiment demonstrates the manipulation of matter by opto-mechanical self-assembly with adjustable length scales and can be potentially extended to quantum degenerate gases.Comment: 20 pages, 6 figure

    Phase-dependent light propagation in atomic vapors

    Get PDF
    Light propagation in an atomic medium whose coupled electronic levels form a diamond-configuration exhibits a critical dependence on the input conditions. In particular, the relative phase of the input fields gives rise to interference phenomena in the electronic excitation whose interplay with relaxation processes determines the stationary state. We integrate numerically the Maxwell-Bloch equations and observe two metastable behaviors for the relative phase of the propagating fields corresponding to two possible interference phenomena. These phenomena are associated to separate types of response along propagation, minimize dissipation, and are due to atomic coherence. These behaviors could be studied in gases of isotopes of alkali-earth atoms with zero nuclear spin, and offer new perspectives in control techniques in quantum electronics.Comment: 16 pages, 11 figures, v2: typos corrected, v3: final version, to appear in Phys. Rev.
    corecore