42 research outputs found

    Cell adhesion molecules regulate Ca2+-mediated steering of growth cones via cyclic AMP and ryanodine receptor type 3

    Get PDF
    Axonal growth cones migrate along the correct paths during development, not only directed by guidance cues but also contacted by local environment via cell adhesion molecules (CAMs). Asymmetric Ca2+ elevations in the growth cone cytosol induce both attractive and repulsive turning in response to the guidance cues (Zheng, J.Q. 2000. Nature. 403:89–93; Henley, J.R., K.H. Huang, D. Wang, and M.M. Poo. 2004. Neuron. 44:909–916). Here, we show that CAMs regulate the activity of ryanodine receptor type 3 (RyR3) via cAMP and protein kinase A in dorsal root ganglion neurons. The activated RyR3 mediates Ca2+-induced Ca2+ release (CICR) into the cytosol, leading to attractive turning of the growth cone. In contrast, the growth cone exhibits repulsion when Ca2+ signals are not accompanied by RyR3-mediated CICR. We also propose that the source of Ca2+ influx, rather than its amplitude or the baseline Ca2+ level, is the primary determinant of the turning direction. In this way, axon-guiding and CAM-derived signals are integrated by RyR3, which serves as a key regulator of growth cone navigation

    Wnt/Calcium Signaling Mediates Axon Growth and Guidance in the Developing Corpus Callosum

    Get PDF
    It has been shown in vivo that Wnt5a gradients surround the corpus callosum and guide callosal axons after the midline (postcrossing) by Wnt5a-induced repulsion via Ryk receptors. In dissociated cortical cultures we showed that Wnt5a simultaneously promotes axon outgrowth and repulsion by calcium signaling. Here to test the role of Wnt5a/calcium signaling in a complex in vivo environment we used sensorimotor cortical slices containing the developing corpus callosum. Plasmids encoding the cytoplasmic marker DsRed and the genetically encoded calcium indicator GCaMP2 were electroporated into one cortical hemisphere. Postcrossing callosal axons grew 50% faster than pre-crossing axons and higher frequencies of calcium transients in axons and growth cones correlated well with outgrowth. Application of pharmacological inhibitors to the slices showed that signaling pathways involving calcium release through IP3 receptors and calcium entry through TRP channels regulate post-crossing axon outgrowth and guidance. Co-electroporation of Ryk siRNA and DsRed revealed that knock down of the Ryk receptor reduced outgrowth rates of postcrossing but not precrossing axons by 50% and caused axon misrouting. Guidance errors in axons with Ryk knockdown resulted from reduced calcium activity. In the corpus callosum CaMKII inhibition reduced the outgrowth rate of postcrossing (but not precrossing) axons and caused severe guidance errors which resulted from reduced CaMKII-dependent repulsion downstream of Wnt/calcium. We show for the first time that Wnt/Ryk calcium signaling mechanisms regulating axon outgrowth and repulsion in cortical cultures are also essential for the proper growth and guidance of postcrossing callosal axons which involve axon repulsion through CaMKII. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 269–283, 2011

    Imaging cytoplasmic cAMP in mouse brainstem neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>cAMP is an ubiquitous second messenger mediating various neuronal functions, often as a consequence of increased intracellular Ca<sup>2+ </sup>levels. While imaging of calcium is commonly used in neuroscience applications, probing for cAMP levels has not yet been performed in living vertebrate neuronal tissue before.</p> <p>Results</p> <p>Using a strictly neuron-restricted promoter we virally transduced neurons in the organotypic brainstem slices which contained pre-Bötzinger complex, constituting the rhythm-generating part of the respiratory network. Fluorescent cAMP sensor Epac1-camps was expressed both in neuronal cell bodies and neurites, allowing us to measure intracellular distribution of cAMP, its absolute levels and time-dependent changes in response to physiological stimuli. We recorded [cAMP]<sub>i </sub>changes in the micromolar range after modulation of adenylate cyclase, inhibition of phosphodiesterase and activation of G-protein-coupled metabotropic receptors. [cAMP]<sub>i </sub>levels increased after membrane depolarisation and release of Ca<sup>2+ </sup>from internal stores. The effects developed slowly and reached their maximum after transient [Ca<sup>2+</sup>]<sub>i </sub>elevations subsided. Ca<sup>2+</sup>-dependent [cAMP]<sub>i </sub>transients were suppressed after blockade of adenylate cyclase with 0.1 mM adenylate cyclase inhibitor 2'5'-dideoxyadenosine and potentiated after inhibiting phosphodiesterase with isobutylmethylxanthine and rolipram. During paired stimulations, the second depolarisation and Ca<sup>2+ </sup>release evoked bigger cAMP responses. These effects were abolished after inhibition of protein kinase A with H-89 pointing to the important role of phosphorylation of calcium channels in the potentiation of [cAMP]<sub>i </sub>transients.</p> <p>Conclusion</p> <p>We constructed and characterized a neuron-specific cAMP probe based on Epac1-camps. Using viral gene transfer we showed its efficient expression in organotypic brainstem preparations. Strong fluorescence, resistance to photobleaching and possibility of direct estimation of [cAMP] levels using dual wavelength measurements make the probe useful in studies of neurons and the mechanisms of their plasticity. Epac1-camps was applied to examine the crosstalk between Ca<sup>2+ </sup>and cAMP signalling and revealed a synergism of actions of these two second messengers.</p

    タイプA コウドウ パターン ニ カンスル シンリガクテキ ケンキュウ : ハッタツ カテイ ニオケル ショヨウイン ノ ブンセキ

    Get PDF
    筑波大学博士 (心理学) 学位論文・平成17年1月31日授与 (乙第2085号

    Myosin Va and Endoplasmic Reticulum Calcium Channel Complex Regulates Membrane Export during Axon Guidance

    Get PDF
    During axon guidance, growth cones navigate toward attractive cues by inserting new membrane on the cue side. This process depends on Ca2+ release from endoplasmic reticulum (ER) Ca2+ channels, but the Ca2+ sensor and effector governing this asymmetric vesicle export remain unknown. We identified a protein complex that controls asymmetric ER Ca2+-dependent membrane vesicle export. The Ca2+-dependent motor protein myosin Va (MyoVa) tethers membrane vesicles to the ER via a common binding site on the two major ER Ca2+ channels, inositol 1,4,5-trisphosphate and ryanodine receptors. In response to attractive cues, micromolar Ca2+ from ER channels triggers MyoVa-channel dissociation and the movement of freed vesicles to the cue side, enabling growth cone turning. MyoVa-Ca2+ channel interactions are required for proper long-range axon growth in developing spinal cord in vivo. These findings reveal a peri-ER membrane export pathway for Ca2+-dependent attraction in axon guidance
    corecore