69 research outputs found

    Unified description of neutron superfluidity in the neutron-star crust with analogy to anisotropic multi-band BCS superconductors

    Full text link
    The neutron superfluidity in the inner crust of a neutron star has been traditionally studied considering either homogeneous neutron matter or only a small number of nucleons confined inside the spherical Wigner-Seitz cell. Drawing analogies with the recently discovered multi-band superconductors, we have solved the anisotropic multi-band BCS gap equations with Bloch boundary conditions, thus providing a unified description taking consistently into account both the free neutrons and the nuclear clusters. Calculations have been carried out using the effective interaction underlying our recent Hartree-Fock-Bogoliubov nuclear mass model HFB-16. We have found that even though the presence of inhomogeneities lowers the neutron pairing gaps, the reduction is much less than that predicted by previous calculations using the Wigner-Seitz approximation. We have studied the disappearance of superfluidity with increasing temperature. As an application we have calculated the neutron specific heat, which is an important ingredient for modeling the thermal evolution of newly-born neutron stars. This work provides a new scheme for realistic calculations of superfluidity in neutron-star crusts.Comment: 15 pages, 31 figures, accepted for publication in Physical Review

    Semi-classical equation of state and specific heats for neutron-star inner crust with proton shell corrections

    Full text link
    An approach to the equation of state for the inner crust of neutron stars based on Skyrme-type forces is presented. Working within the Wigner-Seitz picture, the energy is calculated by the TETF (temperature-dependent extended Thomas-Fermi) method, with proton shell corrections added self-consistently by the Strutinsky-integral method. Using a Skyrme force that has been fitted to both neutron matter and to essentially all the nuclear mass data, we find strong proton shell effects: proton numbers ZZ = 50, 40 and 20 are the only values possible in the inner crust, assuming that nuclear equilibrium is maintained in the cooling neutron star right down to the ambient temperature. Convergence problems with the TETF expansion for the entropy, and our way of handling them, are discussed. Full TETF expressions for the specific heat of inhomogeneous nuclear matter are presented. Our treatment of the electron gas, including its specific heat, is essentially exact, and is described in detail.Comment: 41 pages, 6 figure

    Recomendações para produção de uvas de mesa em cultivo protegido na região da Serra Gaúcha.

    Get PDF
    Escolha do terreno. Variedades e porta-enxertos. Espaçamento de plantio. Sistema de condução. Poda. Manejo dos cachos. Manejo do solo. Manejo da irrigação. Manejo das doenças. Oídio. Podridão cinzenta ou Botrytis. Manejo de pragas. Tripes. Mosca-das-frutas. Ácaros. Traça dos cachos. Manejo da cobertura plástica. Microclima sob a cobertura. Detalhes na instalação da cobertura plástica. Cuidados iniciais. Estrutura para cobertura. Detalhes de altura e espaçamento. Evitar excesso de água sob a cobertura. Cuidados na utilização de fungicidas e inseticidas. Detalhes no manejo da vegetação sob a cobertura. Cuidados para aumentar a vida útil da cobertura.bitstream/item/31714/1/doc070.pd

    Recent breakthroughs in Skyrme-Hartree-Fock-Bogoliubov mass formulas

    Full text link
    We review our recent achievements in the construction of microscopic mass tables based on the Hartree-Fock-Bogoliubov method with Skyrme effective interactions. In the latest of our series of HFB-mass models, we have obtained our best fit ever to essentially all the available mass data, by treating the pairing more realistically than in any of our earlier models. The rms deviation on the 2149 measured masses of nuclei with N and Z>8 has been reduced for the first time in a mean field approach to 0.581 MeV. With the additional constraint on the neutron-matter equation of state, this new force is thus very well-suited for the study of neutron-rich nuclei and for the description of astrophysical environments like supernova cores and neutron-star crusts.Comment: Proceedings of the Fifth International Conference on Exotic Nuclei and Atomic Masses, September 7-13 2008, Ryn (Poland). To appear in the European Physical Journal

    The Effects of Reputation and Ethics on Budgetary Slack

    Get PDF
    This experimental study tests the effects on budgetary slack of two potential controls for opportunistic self-interestóreputation and ethics. I manipulate the level of information asymmetry between the subordinate and the superior regarding productive capability and measure the subordinateís reputation and ethical concerns regarding budgetary slack. In this setting, I examine how information asymmetry affects reputation and ethical concerns, and test the effects of these concerns on budgetary slack. Consistent with prior findings, subordinates restrict the slack in their budgets to well below the maximum under a slackinducing pay scheme, even after five periods of experience. Budgetary slack is negatively associated with a measure of ethical responsibility from a pre-experiment personality questionnaire as well as reputation and ethical concerns expressed in an exit questionnaire. Subordinates express lower reputation concerns as information asymmetry regarding productive capability increases, thereby reducing the superiorís ability to monitor the slack in their budget. Ethical concerns, however, are not diminished with increases in information asymmetry. These results suggest that reputation is a socially mediated control, whereas ethics is an internally mediated control for opportunistic self-interest

    The r-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics

    Full text link
    The identification of the astrophysical site and the specific conditions in which r-process nucleosynthesis takes place remain unsolved mysteries of astrophysics. The present paper emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the radiative neutron capture rates by exotic nuclei close to the neutron drip line and the fission probabilities of heavy neutron-rich nuclei. These quantities are particularly relevant to determine the composition of the matter resulting from the decompression of initially cold neutron star matter. New detailed r-process calculations are performed and the final composition of ejected inner and outer neutron star crust material is estimated. We discuss the impact of the many uncertainties in the astrophysics and nuclear physics on the final composition of the ejected matter. The similarity between the predicted and the solar abundance pattern for A > 140 nuclei as well as the robustness of the prediction with varied input parameters makes this scenario one of the most promising that deserves further exploration.Comment: 8 pages, contribution to the Nuclei in the Cosmos Conference, to appear in Nucl. Phys.

    Shell Corrections of Superheavy Nuclei in Self-Consistent Calculations

    Get PDF
    Shell corrections to the nuclear binding energy as a measure of shell effects in superheavy nuclei are studied within the self-consistent Skyrme-Hartree-Fock and Relativistic Mean-Field theories. Due to the presence of low-lying proton continuum resulting in a free particle gas, special attention is paid to the treatment of single-particle level density. To cure the pathological behavior of shell correction around the particle threshold, the method based on the Green's function approach has been adopted. It is demonstrated that for the vast majority of Skyrme interactions commonly employed in nuclear structure calculations, the strongest shell stabilization appears for Z=124, and 126, and for N=184. On the other hand, in the relativistic approaches the strongest spherical shell effect appears systematically for Z=120 and N=172. This difference has probably its roots in the spin-orbit potential. We have also shown that, in contrast to shell corrections which are fairly independent on the force, macroscopic energies extracted from self-consistent calculations strongly depend on the actual force parametrisation used. That is, the A and Z dependence of mass surface when extrapolating to unknown superheavy nuclei is prone to significant theoretical uncertainties.Comment: 14 pages REVTeX, 8 eps figures, submitted to Phys. Rev.

    A survey of the parameter space of the compressible liquid drop model as applied to the neutron star inner crust

    Full text link
    We present a systematic survey the range of predictions of the neutron star inner crust composition, crust-core transition densities and pressures, and density range of the nuclear `pasta' phases at the bottom of the crust provided by the compressible liquid drop model in the light of current experimental and theoretical constraints on model parameters. Using a Skyrme-like model for nuclear matter, we construct baseline sequences of crust models by consistently varying the density dependence of the bulk symmetry energy at nuclear saturation density, LL, under two conditions: (i) that the magnitude of the symmetry energy at saturation density JJ is held constant, and (ii) JJ correlates with LL under the constraint that the pure neutron matter (PNM) EoS satisfies the results of ab-initio calculations at low densities. Such baseline crust models facilitate consistent exploration of the LL dependence of crustal properties. The remaining surface energy and symmetric nuclear matter parameters are systematically varied around the baseline, and different functional forms of the PNM EoS at sub-saturation densities implemented, to estimate theoretical `error bars' for the baseline predictions. Inner crust composition and transition densities are shown to be most sensitive to the surface energy at very low proton fractions and to the behavior of the sub-saturation PNM EoS. Recent calculations of the energies of neutron drops suggest that the low-proton-fraction surface energy might be higher than predicted in Skyrme-like models, which our study suggests may result in a greatly reduced volume of pasta in the crust than conventionally predicted.Comment: 37 Pages, 16 figures, accepted for publication in Astrophysical Journal Supplement Serie
    corecore