70 research outputs found

    A protocol for identifying the binding sites of small molecules on the cystic fibrosis transmembrane conductance regulator (CFTR) protein

    Get PDF
    We describe a protocol to identify the binding site(s) for a drug called ivacaftor that potentiates the CFTR chloride channel. We use photoaffinity probes-based on the structure of ivacaftor-to covalently modify the CFTR protein at the region that constitutes the drug binding site(s). We define the methods for photo-labeling CFTR, its membrane extraction, and enzymatic digestion using trypsin. We then describe the experimental methods to identify the modified peptides by using mass spectrometry. For complete details on the use and execution of this protocol, please refer to Laselva et al. (2021)

    Double-well magnetic trap for Bose-Einstein condensates

    Full text link
    We present a magnetic trapping scheme for neutral atoms based on a hybrid of Ioffe-Pritchard and Time-averaged Orbiting Potential traps. The resulting double-well magnetic potential has readily controllable barrier height and well separation. This offers a new tool for studying the behavior of Bose condensates in double-well potentials, including atom interferometry and Josephson tunneling. We formulate a description for the potential of this magnetic trap and discuss practical issues such as loading with atoms, evaporative cooling and manipulating the potential.Comment: 7 pages, 6 figures, Revtex

    Screening for Familial APP Mutations in Sporadic Cerebral Amyloid Angiopathy

    Get PDF
    Background Advances in genetic technology have revealed that variation in the same gene can cause both rare familial and common sporadic forms of the same disease. Cerebral amyloid angiopathy (CAA), a common cause of symptomatic intracerebral hemorrhage (ICH) in the elderly, can also occur in families in an autosomal dominant pattern. The majority of affected families harbor mutations in the Beta amyloid Peptide (Aβ) coding region of the gene for amyloid precursor protein (APP) or have duplications of chromosomal segments containing APP. Methodology/Principal Findings A total of 58 subjects with a diagnosis of probable or definite CAA according to validated criteria were included in the present study. We sequenced the Aβ coding region of APP in 58 individuals and performed multiplex ligation-dependent probe amplification to determine APP gene dosage in 60. No patient harbored a known or novel APP mutation or gene duplication. The frequency of mutations investigated in the present study is estimated to range from 0% to 8% in individuals with probable CAA in the general population, based on the ascertained sample size. Conclusions/Significance We found no evidence that variants at loci associated with familial CAA play a role in sporadic CAA. Based on our findings, these rare highly-penetrant mutations are unlikely to be seen in sporadic CAA patients. Therefore, our results do not support systematic genetic screening of CAA patients who lack a strong family history of hemorrhage or dementia.National Institute of Neurological Disorders and Stroke (U.S.) (grant K23NS042695)American Heart AssociationAmerican Stroke Association (Bugher Foundation for Stroke Prevention Research

    Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

    Get PDF
    BACKGROUND: Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. METHODS AND FINDINGS: Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. CONCLUSIONS: Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma

    Somatic mutations affect key pathways in lung adenocarcinoma

    Full text link
    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well- classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers - including NF1, APC, RB1 and ATM - and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.National Human Genome Research InstituteWe thank A. Lash, M.F. Zakowski, M.G. Kris and V. Rusch for intellectual contributions, and many members of the Baylor Human Genome Sequencing Center, the Broad Institute of Harvard and MIT, and the Genome Center at Washington University for support. This work was funded by grants from the National Human Genome Research Institute to E.S.L., R.A.G. and R.K.W.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62885/1/nature07423.pd
    corecore