53 research outputs found

    ETV6 (TEL1) regulates embryonic hematopoiesis in zebrafish

    Full text link
    Chromosomal translocations involving fusions of the human ETV6 (TEL1) gene occur frequently in hematologic malignancies. However, a detailed understanding of the normal function of ETV6 remains incomplete. This study has employed zebrafish as a relevant model to investigate the role of ETV6 during embryonic hematopoiesis. Zebrafish possessed a single conserved etv6 ortholog that was expressed from 12 hpf in the lateral plate mesoderm, and later in hematopoietic, vascular and other tissues. Morpholino-mediated gene knockdown of etv6 revealed the complex contribution of this gene toward embryonic hematopoiesis. During primitive hematopoiesis, etv6 knockdown resulted in reduced levels of progenitor cells, erythrocyte and macrophage populations, but increased numbers of incompletely differentiated heterophils. Definitive hematopoiesis was also perturbed, with etv6 knockdown leading to decreased erythrocytes and myeloid cells, but enhanced lymphopoiesis. This study suggests that ETV6 plays a broader and more complex role in early hematopoiesis than previously thought, impacting on the development of multiple lineages. © 2015 Ferrata Storti Foundation

    Alternative TEL-JAK2 fusions associated with T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia dissected in zebrafish

    Full text link
    Background Chromosomal translocations resulting in alternative fusions of the human TEL (ETV6) and JAK2 genes have been observed in cases of acute lymphoblastic leukemia and chronic myelogenous leukemia, but a full understanding of their role in disease etiology has remained elusive. In this study potential differences between these alternative TEL-JAK2 fusions, including their lineage specificity, were investigated.Design and Methods TEL-JAK2 fusion types derived from both T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia were generated using the corresponding zebrafish tel and jak2a genes and placed under the control of either the white blood cell-specific spi1 promoter or the ubiquitously-expressed cytomegalovirus promoter. These constructs were injected into zebrafish embryos and their effects on hematopoiesis examined using a range of molecular approaches. In addition, the functional properties of the alternative fusions were investigated in vitro.Results Injection of the T-cell acute lymphoblastic leukemia-derived tel-jak2a significantly perturbed lymphopoiesis with a lesser effect on myelopoiesis in zebrafish embryos. In contrast, injection of the atypical chronic myelogenous leukemia-derived tel-jak2a resulted in significant perturbation of the myeloid compartment. These phenotypes were observed regardless of whether expressed in a white blood cell-specific or ubiquitous manner, with no overt cellular proliferation outside of the hematopoietic cells. Functional studies revealed subtle differences between the alternative forms, with the acute lymphoblastic leukemia variant showing higher activity, but reduced downstream signal transducer and activator of transcription activation and decreased sensitivity to JAK2 inhibition. JAK2 activity was required to mediate the effects of both variants on zebrafish hematopoiesis.Conclusions This study indicates that the molecular structure of alternative TEL-JAK2 fusions likely contributes to the etiology of disease. The data further suggest that this class of oncogene exerts its effects in a cell lineage-specific manner, which may be due to differences in downstream signaling.<br /

    The crystal structure of mammalian inositol 1,3,4,5,6-pentakisphosphate 2-kinase reveals a new zinc-binding site and key features for protein function

    Get PDF
    Inositol 1,3,4,5,6-pentakisphosphate 2-kinases (IP5 2-Ks) comprise a family of enzymes in charge of synthesizing inositol hexakisphosphate (IP6) in eukaryotic cells. This protein and its product IP6 present many roles in cells, participating in mRNA export, embryonic development, and apoptosis. We reported previously that the full-length IP5 2-K from Arabidopsis thaliana (At) is a zinc metallo-enzyme including two separated lobes (the N and C lobes). We have also shown conformational changes in IP5 2-K and have identified the residues involved in substrate recognition and catalysis. However, the specific features of mammalian IP5 2-Ks remain unknown. To this end, we report here the first structure for a murine IP5 2-K in complex with ATP/IP5 or IP6. Our structural findings indicated that the general folding in N and C lobes is conserved with AtIP5 2-K. A helical scaffold in the C lobe constitutes the inositol phosphate (IP)-binding site, which, along with the participation of the N lobe, endows high specificity to this protein. However, we also noted large structural differences between the orthologous from these two eukaryotic kingdoms. These differences include a novel zinc-binding site and regions unique to the mammalian IP5 2-K, as an unexpected basic patch on the protein surface. In conclusion, our findings have uncovered distinct features of a mammalian IP5 2-K and set the stage for investigations into protein-protein or protein-RNA interactions important for IP5 2-K function and activity

    ETV6 (TEL1) regulates embryonic hematopoiesis in zebrafish

    No full text

    Hematopoietic perturbation in zebrafish expressing a tel-jak2a fusion

    Full text link
    ObjectiveVarious TEL-JAK2 fusions have been identified in patients with lymphoblastic and myeloid leukemias that result in constitutive activation of the JAK2 kinase domain. Such fusions can mediate factor-independent growth of hematopoietic cell lines and induction of malignancy in mouse models.Materials and methodsTo assess whether zebrafish could be utilized as a suitable model for the study of myeloid oncogenesis, we generated a zebrafish tel-jak2a fusion oncoprotein based on that seen in a case of chronic myeloid leukemia. This was transiently expressed in zebrafish embryos under the control of the spi1 promoter, which is strongly active in myeloid precursors.ResultsVisual, histological, and molecular analysis revealed disruption of normal embryonic hematopoiesis, including perturbation of the myeloid and erythroid lineages.ConclusionThese results indicate that the zebrafish tel-jak2a oncoprotein is functional, and suggest that this organism will be useful for the experimental study of myeloid malignancy.<br /

    The role of jak2a in zebrafish hematopoiesis

    Full text link
    Janus kinase 2 (Jak2) transduces signals from hematopoietic cytokines, and a gain-of-function mutation (Jak2617V&gt;F) is associated with myeloproliferative diseases, particularly polycythemia vera. In this study, we examined the role of jak2a in zebrafish embryos in knock-down and overexpression studies using morpholinos (MOs) targeting the 5\u27 untranslated region (UTR) (jak2aUTR-MO) and splice-site junction (jak2aSS-MO) of jak2a, a Jak inhibitor AG490 and a constitutive-active form of jak2a (jak2aca). At 18 and 24 hours after fertilization (hpf), jak2a is expressed predominantly in the intermediate cell mass (ICM; site of primitive hematopoiesis) of wild-type and chordin morphant embryos (characterized by expansion of ICM). Both jak2a MOs and AG490 reduced gata1+ (erythroid) cells in Tg(gata1:GFP) embryos, signal transducer and activation of transcription 5 (stat5) phosphorylation, and gene expression associated with early progenitors (scl and lmo2) and erythroid (gata1, he1 and &szlig;he1) and myeloid (spi1 [early] and mpo [late]) lineages. The chordin morphant is associated with increased stat5 phosphorylation, and both jak2a MOs and treatment with AG490 significantly ameliorated ICM expansion and hematopoietic gene up-regulation in these embryos. Injection of plasmid encoding jak2aca significantly increased erythropoiesis and expression of gata1, he1 and &szlig;he1, spi1, mpo, and l-plastin. In conclusion, zebrafish jak2a is involved in primitive hematopoiesis under normal and deregulated conditions
    corecore