5 research outputs found

    Cervical vagal nerve stimulation activates the stellate ganglion in ambulatory dogs

    Get PDF
    BACKGROUND AND OBJECTIVES: Recent studies showed that, in addition to parasympathetic nerves, cervical vagal nerves contained significant sympathetic nerves. We hypothesized that cervical vagal nerve stimulation (VNS) may capture the sympathetic nerves within the vagal nerve and activate the stellate ganglion. MATERIALS AND METHODS: We recorded left stellate ganglion nerve activity (SGNA), left thoracic vagal nerve activity (VNA), and subcutaneous electrocardiogram in seven dogs during left cervical VNS with 30 seconds on-time and 30 seconds off time. We then compared the SGNA between VNS on and off times. RESULTS: Cervical VNS at moderate (0.75 mA) output induced large SGNA, elevated heart rate (HR), and reduced HR variability, suggesting sympathetic activation. Further increase of the VNS output to >1.5 mA increased SGNA but did not significantly increase the HR, suggesting simultaneous sympathetic and parasympathetic activation. The differences of integrated SGNA and integrated VNA between VNS on and off times (ΔSGNA) increased progressively from 5.2 mV-s {95% confidence interval (CI): 1.25-9.06, p=0.018, n=7} at 1.0 mA to 13.7 mV-s (CI: 5.97-21.43, p=0.005, n=7) at 1.5 mA. The difference in HR (ΔHR, bpm) between on and off times was 5.8 bpm (CI: 0.28-11.29, p=0.042, n=7) at 1.0 mA and 5.3 bpm (CI 1.92 to 12.61, p=0.122, n=7) at 1.5 mA. CONCLUSION: Intermittent cervical VNS may selectively capture the sympathetic components of the vagal nerve and excite the stellate ganglion at moderate output. Increasing the output may result in simultaneously sympathetic and parasympathetic capture

    Effects of Vagal Nerve Stimulation on Ganglionated Plexi Nerve Activity and Ventricular Rate in Ambulatory Dogs With Persistent Atrial Fibrillation

    No full text
    OBJECTIVES: This study was designed to test the hypothesis that low-level vagal nerve stimulation (VNS) reduces the ventricular rate (VR) during atrial fibrillation (AF) through the activation of the inferior vena cava (IVC)-inferior atrial ganglionated plexus nerve activity (IAGPNA). BACKGROUND: Increased IVC-IAGPNA can suppress atrioventricular node conduction and slow VR in canine models of AF. METHODS: Persistent AF was induced in 6 dogs and the IVC-IAGPNA, right vagal nerve activity, left vagal nerve activity, and an electrocardiogram were recorded. After persistent AF was documented, VNS was programed to 14 s "on" and 1.1 min "off." After 1 week, the VNS was reprogramed to 3 min off and stimulation continued for another week. Neural remodeling of the stellate ganglion (SG) was assessed with tyrosine hydroxylase staining and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling staining. RESULTS: Average IVC-IAGPNA was increased during both VNS 1.1 min off (8.20 ± 2.25 μV [95% confidence interval (CI): 6.33 to 9.53 μV]; p = 0.002) and 3 min off (7.96 ± 2.03 μV [95% CI: 6.30 to 9.27 μV]; p = 0.001) versus baseline (7.14 ± 2.20 μV [95% CI: 5.35 to 8.52 μV]). VR was reduced during both VNS 1.1 min off (123.29 ± 6.29 beats/min [95% CI: 116.69 to 129.89 beats/min]; p = 0.001) and 3 min off (120.01 ± 4.93 beats/min [95% CI: 114.84 to 125.18 beats/min]; p = 0.001) compared to baseline (142.04 ± 7.93 bpm [95% CI: 133.72 to 150.37]). Abnormal regions were observed in the left SG, but not in the right SG. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling-positive neurons were found in 22.2 ± 17.2% [95% CI: 0.9% to 43.5%] of left SG cells and 12.8 ± 8.4% [95% CI: 2.4% to 23.2%] of right SG cells. CONCLUSIONS: Chronic low-level VNS increases IVC-IAGPNA and damages bilateral stellate ganglia. Both mechanisms could contribute to the underlying mechanism of VR control during AF

    Effects of Vagal Nerve Stimulation on Ganglionated Plexi Nerve Activity and Ventricular Rate in Ambulatory Dogs With Persistent Atrial Fibrillation

    Get PDF
    OBJECTIVES: This study was designed to test the hypothesis that low-level vagal nerve stimulation (VNS) reduces the ventricular rate (VR) during atrial fibrillation (AF) through the activation of the inferior vena cava (IVC)-inferior atrial ganglionated plexus nerve activity (IAGPNA). BACKGROUND: Increased IVC-IAGPNA can suppress atrioventricular node conduction and slow VR in canine models of AF. METHODS: Persistent AF was induced in 6 dogs and the IVC-IAGPNA, right vagal nerve activity, left vagal nerve activity, and an electrocardiogram were recorded. After persistent AF was documented, VNS was programed to 14 s "on" and 1.1 min "off." After 1 week, the VNS was reprogramed to 3 min off and stimulation continued for another week. Neural remodeling of the stellate ganglion (SG) was assessed with tyrosine hydroxylase staining and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling staining. RESULTS: Average IVC-IAGPNA was increased during both VNS 1.1 min off (8.20 ± 2.25 μV [95% confidence interval (CI): 6.33 to 9.53 μV]; p = 0.002) and 3 min off (7.96 ± 2.03 μV [95% CI: 6.30 to 9.27 μV]; p = 0.001) versus baseline (7.14 ± 2.20 μV [95% CI: 5.35 to 8.52 μV]). VR was reduced during both VNS 1.1 min off (123.29 ± 6.29 beats/min [95% CI: 116.69 to 129.89 beats/min]; p = 0.001) and 3 min off (120.01 ± 4.93 beats/min [95% CI: 114.84 to 125.18 beats/min]; p = 0.001) compared to baseline (142.04 ± 7.93 bpm [95% CI: 133.72 to 150.37]). Abnormal regions were observed in the left SG, but not in the right SG. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling-positive neurons were found in 22.2 ± 17.2% [95% CI: 0.9% to 43.5%] of left SG cells and 12.8 ± 8.4% [95% CI: 2.4% to 23.2%] of right SG cells. CONCLUSIONS: Chronic low-level VNS increases IVC-IAGPNA and damages bilateral stellate ganglia. Both mechanisms could contribute to the underlying mechanism of VR control during AF
    corecore