1,428 research outputs found

    Spin-orbital gap of multiorbital antiferromagnet

    Full text link
    In order to discuss the spin-gap formation in a multiorbital system, we analyze an e_g-orbital Hubbard model on a geometrically frustrated zigzag chain by using a density-matrix renormalization group method. Due to the appearance of a ferro-orbital arrangement, the system is regarded as a one-orbital system, while the degree of spin frustration is controlled by the spatial anisotropy of the orbital. In the region of strong spin frustration, we observe a finite energy gap between ground and first-excited states, which should be called a spin-orbital gap. The physical meaning is clarified by an effective Heisenberg spin model including correctly the effect of the orbital arrangement influenced by the spin excitation.Comment: 8 pages, 6 figures, extended versio

    Superconductivity emerging near quantum critical point of valence transition

    Full text link
    The nature of the quantum valence transition is studied in the one-dimensional periodic Anderson model with Coulomb repulsion between f and conduction electrons by the density-matrix renormalization group method. It is found that the first-order valence transition emerges with the quantum critical point and the crossover from the Kondo to the mixed-valence states is strongly stabilized by quantum fluctuation and electron correlation. It is found that the superconducting correlation is developed in the Kondo regime near the sharp valence increase. The origin of the superconductivity is ascribed to the development of the coherent motion of electrons with enhanced valence fluctuation, which results in the enhancement of the charge velocity, but not of the charge compressibility. Statements on the valence transition in connection with Ce metal and Ce compounds are given.Comment: 9 pages, 4 figure

    Magnetically Regulated Star Formation in 3D: The Case of Taurus Molecular Cloud Complex

    Full text link
    We carry out three-dimensional MHD simulations of star formation in turbulent, magnetized clouds, including ambipolar diffusion and feedback from protostellar outflows. The calculations focus on relatively diffuse clouds threaded by a strong magnetic field capable of resisting severe tangling by turbulent motions and retarding global gravitational contraction in the cross-field direction. They are motivated by observations of the Taurus molecular cloud complex (and, to a lesser extent, Pipe Nebula), which shows an ordered large-scale magnetic field, as well as elongated condensations that are generally perpendicular to the large-scale field. We find that stars form in earnest in such clouds when enough material has settled gravitationally along the field lines that the mass-to-flux ratios of the condensations approach the critical value. Only a small fraction (of order 1% or less) of the nearly magnetically-critical, condensed material is turned into stars per local free-fall time, however. The slow star formation takes place in condensations that are moderately supersonic; it is regulated primarily by magnetic fields, rather than turbulence. The quiescent condensations are surrounded by diffuse halos that are much more turbulent, as observed in the Taurus complex. Strong support for magnetic regulation of star formation in this complex comes from the extremely slow conversion of the already condensed, relatively quiescent C18^{18}O gas into stars, at a rate two orders of magnitude below the maximum, free-fall value. We analyze the properties of dense cores, including their mass spectrum, which resembles the stellar initial mass function.Comment: submitted to Ap

    Modeling the gamma-ray emission produced by runaway cosmic rays in the environment of RX J1713.7-3946

    Full text link
    Diffusive shock acceleration in supernova remnants is the most widely invoked paradigm to explain the Galactic cosmic ray spectrum. Cosmic rays escaping supernova remnants diffuse in the interstellar medium and collide with the ambient atomic and molecular gas. From such collisions gamma-rays are created, which can possibly provide the first evidence of a parent population of runaway cosmic rays. We present model predictions for the GeV to TeV gamma-ray emission produced by the collisions of runaway cosmic rays with the gas in the environment surrounding the shell-type supernova remnant RX J1713.7-3946. The spectral and spatial distributions of the emission, which depend upon the source age, the source injection history, the diffusion regime and the distribution of the ambient gas, as mapped by the LAB and NANTEN surveys, are studied in detail. In particular, we find for the region surrounding RX J1713-3946, that depending on the energy one is observing at, one may observe startlingly different spectra or may not detect any enhanced emission with respect to the diffuse emission contributed by background cosmic rays. This result has important implications for current and future gamma-ray experiments.Comment: version published on PAS

    Molecular Clouds as Cosmic-Ray Barometers

    Get PDF
    The advent of high sensitivity, high resolution gamma-ray detectors, together with a knowledge of the distribution of the atomic hydrogen and especially of the molecular hydrogen in the Galaxy on sub-degree scales creates a unique opportunity to explore the flux of cosmic rays in the Galaxy. We here present the new data on the distribution of the molecular hydrogen from a large region of the inner Galaxy obtained by the NANTEN Collaboration. We then introduce a methodology which aims to provide a test bed for current and future gamma-ray observatories to explore the cosmic ray flux at various positions in our Galaxy. In particular, for a distribution of molecular clouds, as provided by the NANTEN survey, and local cosmic ray density as measured at the Earth, we estimate the expected GeV to TeV gamma-ray signal, which can then be compared with observations and use to test the cosmic ray flux.Comment: PASJ (in press

    Molecular Clouds as Cosmic Ray Laboratories

    Full text link
    We will here discuss how the gamma-ray emission from molecular clouds can be used to probe the cosmic ray flux in distant regions of the Galaxy and to constrain the highly unknown cosmic ray diffusion coefficient. In particular we will discuss the GeV to TeV emission from runaway cosmic rays penetrating molecular clouds close to young and old supernova remnants and in molecular clouds illuminated by the background cosmic ray flux.Comment: to appear on Proceedings of 25th Texas Symposium on Relativistic Astrophysic

    Spin-Peierls transition of the first order in S=1 antiferromagnetic Heisenberg chains

    Full text link
    We investigate a one-dimensional S=1 antiferromagnetic Heisenberg model coupled to a lattice distortion by a quantum Monte Carlo method. Investigating the ground state energy of the static bond-alternating chain, we find that the instability to a dimerized chain depends on the value of the spin-phonon coupling, unlike the case of S=1/2. The spin state is the dimer state or the uniform Haldane state depending on whether the lattice distorts or not, respectively. At an intermediate value of the spin-phonon coupling, we find the first-order transition between the two states. We also find the coexistence of the two states.Comment: 7 pages, 12 eps figures embedded in the text; corrected typos, replaced figure

    Local magnetic structure due to inhomogeneity of interaction in S=1/2 antiferromagnetic chain

    Full text link
    We study the magnetic properties of S=1/2S=1/2 antiferromagnetic Heisenberg chains with inhomogeneity of interaction. Using a quantum Monte Carlo method and an exact diagonalization method, we study bond-impurity effect in the uniform S=1/2S=1/2 chain and also in the bond-alternating chain. Here `bond impurity' means a bond with strength different from those in the bulk or a defect in the alternating order. Local magnetic structures induced by bond impurities are investigated both in the ground state and at finite temperatures, calculating the local magnetization, the local susceptibility and the local field susceptibility. We also investigate the force acting between bond impurities and find the force generally attractive.Comment: 15pages, 34figure

    Onset of dissipation in ballistic atomic wires

    Get PDF
    Electronic transport at finite voltages in free-standing gold atomic chains of up to 7 atoms in length is studied at low temperatures using a scanning tunneling microscope (STM). The conductance vs voltage curves show that transport in these single-mode ballistic atomic wires is non-dissipative up to a finite voltage threshold of the order of several mV. The onset of dissipation and resistance within the wire corresponds to the excitation of the atomic vibrations by the electrons traversing the wire and is very sensitive to strain.Comment: Revtex4, 4 pages, 3 fig

    Singly- and doubly-deuterated formaldehyde in massive star-forming regions

    Full text link
    Deuterated molecules are good tracers of the evolutionary stage of star-forming cores. During the star formation process, deuterated molecules are expected to be enhanced in cold, dense pre-stellar cores and to deplete after protostellar birth. In this paper we study the deuteration fraction of formaldehyde in high-mass star-forming cores at different evolutionary stages to investigate whether the deuteration fraction of formaldehyde can be used as an evolutionary tracer. Using the APEX SEPIA Band 5 receiver, we extended our pilot study of the JJ=3\rightarrow2 rotational lines of HDCO and D2_2CO to eleven high-mass star-forming regions that host objects at different evolutionary stages. High-resolution follow-up observations of eight objects in ALMA Band 6 were performed to reveal the size of the H2_2CO emission and to give an estimate of the deuteration fractions HDCO/H2_2CO and D2_2CO/HDCO at scales of \sim6" (0.04-0.15 pc at the distance of our targets). Our observations show that singly- and doubly deuterated H2_2CO are detected toward high-mass protostellar objects (HMPOs) and ultracompact HII regions (UCHII regions), the deuteration fraction of H2_2CO is also found to decrease by an order of magnitude from the earlier HMPO phases to the latest evolutionary stage (UCHII), from \sim0.13 to \sim0.01. We have not detected HDCO and D2_2CO emission from the youngest sources (high-mass starless cores, HMSCs). Our extended study supports the results of the previous pilot study: the deuteration fraction of formaldehyde decreases with evolutionary stage, but higher sensitivity observations are needed to provide more stringent constraints on the D/H ratio during the HMSC phase. The calculated upper limits for the HMSC sources are high, so the trend between HMSC and HMPO phases cannot be constrained.Comment: 15 pages, 4 figures, 4 tables, accepted for publication in A&
    corecore