4 research outputs found

    Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings

    No full text
    TiN and (Ti,Mg)N thin film coatings were deposited on Ti substrates by an arc-physical vapor deposition technique. The effect of cell presence on hydroxyapatite (HA) formation was investigated using surfaces with four different Mg contents (0, 8.1, 11.31, and 28.49 at.%). Accelerated corrosion above 10 at.% Mg had a negative effect on the performance in terms of both cell proliferation and mineralization. In the absence of cells, Mg-free TiN coatings and low-Mg (8.1 at.%)-doped (Ti,Mg)N surfaces led to an early HA deposition (after 7 days and 14 days, respectively) in cell culture medium (DMEM), but the crystallinity was low. More crystalline HA structures were obtained in the presence of the cells. HA deposits with an ideal Ca/P ratio were obtained at least a week earlier, at day 14, in TiN and low-Mg (8.1 at.%)-doped (Ti,Mg)N compared with that of high-Mg-containing surfaces (> 10 at.%). A thicker mineralized matrix was formed on low-Mg (8.1 at.%)-doped (Ti,Mg)N relative to that of the TiN sample. Low-Mg doping (< 10 at.%) into TiN coatings resulted in better cell proliferation and thicker mineralized matrix formation, so it could be a promising alternative for hard tissue applications

    Assessment of bone healing using ( Ti,Mg)N

    No full text
    Magnesium (Mg) based implants such as plates and screws are often preferred to treat bone defects because of the positive effects of magnesium in bone growth and healing. Their low corrosion resistance, however, leads to fast degradation and consequently failure before healing was completed. Previously, we developed Mg doped titanium nitrate (TiN) thin film coatings to address these limitations and demonstrated that <10 at% Mg doping led to enhanced mineralization in vitro. In the present study, in vivo performance of (Ti,Mg)N coated Ti6Al4V based plates and screws were studied in the rabbit model. Bone fractures were formed on femurs of 16 rabbits and then fixed with either (Ti,Mg)N coated (n= 8) or standard TiN coated (n= 8) plates and screws. X-ray imaging and mu CT analyses showed enhanced bone regeneration on fracture sites fixed with (Ti,Mg)N coated plates in comparison with the Mg free ones. Bone mineral density, bone volume, and callus volume were also found to be 11.4, 23.4, and 42.8% higher, respectively, in accordance with mu CT results. Furthermore, while TiN coatings promoted only primary bone regeneration, (Ti,Mg)N led to secondary bone regeneration in 6 weeks. These results indicated that Mg presence in the coatings accelerated bone regeneration in the fracture site. (Ti,Mg)N coating can be used as a practical method to increase the efficiency of existing bone fixation devices of varying geometry

    Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings

    No full text
    TiN and (Ti,Mg)N thin film coatings were deposited on Ti substrates by an arc-physical vapor deposition technique. The effect of cell presence on hydroxyapatite (HA) formation was investigated using surfaces with four different Mg contents (0, 8.1, 11.31, and 28.49 at.%). Accelerated corrosion above 10 at.% Mg had a negative effect on the performance in terms of both cell proliferation and mineralization. In the absence of cells, Mg-free TiN coatings and low-Mg (8.1 at.%)-doped (Ti,Mg)N surfaces led to an early HA deposition (after 7 days and 14 days, respectively) in cell culture medium (DMEM), but the crystallinity was low. More crystalline HA structures were obtained in the presence of the cells. HA deposits with an ideal Ca/P ratio were obtained at least a week earlier, at day 14, in TiN and low-Mg (8.1 at.%)-doped (Ti,Mg)N compared with that of high-Mg-containing surfaces (> 10 at.%). A thicker mineralized matrix was formed on low-Mg (8.1 at.%)-doped (Ti,Mg)N relative to that of the TiN sample. Low-Mg doping (< 10 at.%) into TiN coatings resulted in better cell proliferation and thicker mineralized matrix formation, so it could be a promising alternative for hard tissue applications
    corecore