26 research outputs found

    Regulace sestřihu pre-mRNA v S. cerevisiae: kooperace RNA a proteinů.

    Get PDF
    Ondřej Gahura, PhD Thesis 2011 Regulation of pre-mRNA splicing in S. cerevisiae: where RNA cooperates with proteins Abstract Removal of introns from protein coding transcripts occurs in two splicing reactions catalyzed by a large nuclear complex, spliceosome. The spliceosome is an extremely intricate and dynamic machine, wherein contributions of small RNA molecules and multiple proteins are coordinated to meet the requirements of absolute precision and high flexibility. For an intimate understanding of pre-mRNA splicing, it is necessary to unravel roles of individual components and to dissect the partial mechanisms. In the first part of this work, we describe the role of the Prp45 splicing factor in Saccharomyces cerevisiae. Mapping of genetic interactions of a conditionally lethal allele prp45(1-169) suggests a relationship of Prp45 to the NTC complex and to the second transesterification. Two-hybrid assay and purification of spliceosomal complexes reveal a contribution of the Prp45 C-terminus in the Prp22 helicase recruitment and/or regulation. Numerous experiments with reporter substrates document the need of Prp45 for the efficient splicing of a specific subset of introns. Our observations suggest that the function of Prp45 in splicing is conserved in evolution. The second part is devoted to the role of...Ondřej Gahura, Dizertační práce 2011 Regulace sestřihu pre-mRNA v S. cerevisiae: kooperace RNA a proteinů Abstrakt Odstraňování intronů z transkriptů probíhá prostřednictvím sestřihu v reakci katalyzované velkým jaderným komplexem - spliceosomem. Sestřih je nesmírně komplikovaný a dynamický proces, v němž koordinované fungování pěti malých molekul RNA a řady proteinů zajišťuje splnění požadavků na extrémní přesnost a flexibilitu. Pro důkladné pochopení sestřihu pre-mRNA je nezbytné rozklíčovat role jednotlivých komponent spliceosomu a porozumět všem dílčím mechanismům. První část práce se zabývá rolí sestřihového faktoru Prp45 v kvasince Saccharomyces cerevisiae. Mapování genetických interakcí alely prp45(1-169) ukazuje na vztah mezi Prp45, NTC komplexem a druhým sestřihovým krokem. Analýza interakcí pomocí dvouhybridního systému a purifikace sestřihových komplexů dokladuje roli C-koncové části Prp45 v regulaci a/nebo vyvazování helikázy Prp22 do spliceosomu. Experimenty s reportérovými substráty prokazují, že Prp45 je vyžadován pro efektivní sestřih určité skupiny intronů. Naše pozorování podporují hypotézu, že role Prp45 v sestřihu je konzervována v evoluci. Druhá část práce je věnována studiu vlivusekundárních struktur intronů na identifikaci 3' sestřihových míst (3' splice site; 3'ss). Ukázali jsme, že...Department of Cell BiologyKatedra buněčné biologieFaculty of SciencePřírodovědecká fakult

    Secondary structure is required for 3′ splice site recognition in yeast

    Get PDF
    Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3′ splice site (3′ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3′ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3′ss distance and masked potential 3′ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3′ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3′ss recognition

    Regulation of pre-mRNA splicing in S. cerevisiae: where RNA cooperates with proteins.

    No full text
    Ondřej Gahura, PhD Thesis 2011 Regulation of pre-mRNA splicing in S. cerevisiae: where RNA cooperates with proteins Abstract Removal of introns from protein coding transcripts occurs in two splicing reactions catalyzed by a large nuclear complex, spliceosome. The spliceosome is an extremely intricate and dynamic machine, wherein contributions of small RNA molecules and multiple proteins are coordinated to meet the requirements of absolute precision and high flexibility. For an intimate understanding of pre-mRNA splicing, it is necessary to unravel roles of individual components and to dissect the partial mechanisms. In the first part of this work, we describe the role of the Prp45 splicing factor in Saccharomyces cerevisiae. Mapping of genetic interactions of a conditionally lethal allele prp45(1-169) suggests a relationship of Prp45 to the NTC complex and to the second transesterification. Two-hybrid assay and purification of spliceosomal complexes reveal a contribution of the Prp45 C-terminus in the Prp22 helicase recruitment and/or regulation. Numerous experiments with reporter substrates document the need of Prp45 for the efficient splicing of a specific subset of introns. Our observations suggest that the function of Prp45 in splicing is conserved in evolution. The second part is devoted to the role of..

    Synthetic Lethal Interactions of the PRP45 Gene in Saccharomyces cerevisiae

    No full text
    Katedra buněčné biologieDepartment of Cell BiologyPřírodovědecká fakultaFaculty of Scienc

    Synthetic Lethal Interactions of the PRP45 Gene in Saccharomyces cerevisiae

    No full text
    Katedra buněčné biologieDepartment of Cell BiologyPřírodovědecká fakultaFaculty of Scienc

    TbIF1 functions as a unidirectional inhibitor of <i>T</i>. <i>brucei</i> F<sub>o</sub>F<sub>1</sub>-ATP synthase.

    No full text
    <p>(A) Total ATPase activity was measured in TbIF1 OE cells that were noninduced (grey) or induced for 2 days with tet (grey cross-hatch). To define the contribution of F<sub>o</sub>F<sub>1</sub>-ATPase to the total ATPase activity measured, samples were also incubated with either azide (AZ, 1 mM) or oligomycin (OM, 2.5 μg/ml). The total amount of free-phosphate detected in the untreated noninduced sample was set at 100%. (means ± s.d.; n = 3; ** <i>p</i> < 0.001; Student’s <i>t</i> test). (B) The amount of ATP synthesized by oxidative phosphorylation was measured in the digitonin-extracted mitochondria from both noninduced (NON) TbIF1 OE cells and cells induced for 2 days (IND2). The reaction was started by the addition of succinate and ADP. Malonate (mal.) and atractyloside (atract.) were added as specific inhibitors of succinate dehydrogenase and the ATP/ADP carrier, respectively.</p

    Recombinant TbIF1 inhibits the F<sub>o</sub>F<sub>1</sub>-ATPase activity <i>in vitro</i>.

    No full text
    <p>Mitochondria isolated from wildtype PF427 cells were lysed with dodecyl maltoside and the ATPase activity was measured by a Pullman assay. These samples were either treated with azide (AZ, 2 mM), oligomycin (OM, 50 μM) or the indicated rTbIF1 concentrations. (means ± s.d.; n > 3).</p

    Neither TbIF1 silencing nor overexpression are harmful to PF <i>T</i>. <i>brucei</i> cells grown <i>in vitro</i>.

    No full text
    <p>(A) TbIF1 RNAi noninduced (NON) and induced (IND) cells were maintained in the exponential growth phase (between 10<sup>6</sup> and 10<sup>7</sup> cells/ml) and the cumulative cell number represents the normalization of cell densities by factoring in the daily dilution factor. The figure is representative of three independent RNAi inductions. B) The growth rate of cells either induced (IND) or noninduced (NON) for TbIF1 OE were determined in the same manner as in A. C) The steady-state abundance of TbIF1 in the parental cell line (29–13), TbIF1 RNAi noninduced (NON) and cells induced (IND) with tet for 1, 2, 3 and 4 days was determined by western blot analysis using a specific TbIF1 antiserum. Cytosolic enolase served as a loading control. The numbers depicted underneath the top panel represent the abundance of immunodetected protein as a percentage of the noninduced samples after normalizing to the loading control. D) Ectopic V5-tagged TbIF1 expression was confirmed by western blot analysis using whole cell lysates from PF 29–13, noninduced (NON) TbIF1 OE and cells induced (IND) for 1, 2, 3 and 4 days. The endogenous TbIF1 and the V5-tagged ectopic protein were visualized using a polyclonal TbIF1 antiserum. Comparable loading was confirmed by Bio-Rad TGX stain-free technology. Levels of V5-tagged TbIF1 overexpression as compared to the endogenous TbIF1 are indicated at the top of the immunoblot.</p
    corecore