16 research outputs found

    Influences of carbohydrate plus amino acid supplementation on differing exercise intensity adaptations in older persons: skeletal muscle and endocrine responses

    Get PDF
    Losses in physiological function in healthy ageing occur partly as a consequence of reduced protein intake and partly as a consequence of less than 30-min/day of moderate to vigorous physical activity. The current study aimed to compare the effects of two different intensities of resistance training in healthy older adults, whose habitual dietary intake was supplemented with carbohydrate and amino acid preparations. We hypothesised that although intensive exercise with appropriate carbohydrate and amino acid supplementation would result in the most profound impact on in vivo markers of healthy physiologic and endocrine functions in previously sedentary older individuals, the effectiveness of the less intense exercise prescription with supplementation would also result in beneficial adaptations over and above findings of previous studies on low intensity exercise alone. Twenty-nine older adults (out of 32) completed the study after being randomly assigned to low (SUP-LowR, i.e., ∼40% 1RM; n=16) versus high resistance training (SUP-HighR, i.e., ∼80% 1RM; n=13) for 12 weeks. A carbohydrate supplement was ingested immediately before and during every exercise session and an amino acid cocktail was ingested post-exercise. Neither intervention significantly impacted upon body composition assessed using: Body mass index, waist/hip ratio and bioelectric impedance. Muscle strength increased similarly in the two groups with the SUP-HighR protocol showing 46±8%, 10.8±4.4% and 26.9± 4.9% (P<0.01) improvements in 1-RM strength, unilateral and bilateral knee extension torque, respectively, compared with 39±2%, 9.4±3.7% and 29.5± 8.2% (P<0.01) increments in the same measures in the SUP-LowR group. Lean muscle thickness however, showed a greater benefit of the SUP-LowR protocol (8.7±3.9% increase, P<0.05) compared with the SUP-HighR protocol, which elicited no significant change. In terms of functional abilities, only the standing-from-lying (SFL) test exhibited an improvement in rate in the SUP-HighR group (-11.4%, P< 0.05). The SUP-LowR group, on the other hand, showed significant improvements in the get-up-andgo (-8.7±3.6%, P<0.05), the SFL (-4.7% change, P=0.05) and the 6-min walk (7.2±2.2% increase in distance covered, P<0.01) tests. Following overnight fasting, serum levels of glucose changed significantly (-13±4.7% decrease, P<0.01) in SUP-LowR. Serum levels of insulin (-25±5.3% decrease, P=0.05), neuropeptide Y (-24±15.3% decrease, P=0.02), and IGFBP-3 (-11±6.6% decrease, P=0.03), changed significantly in SUP-HighR. Circulating levels of interleukin-6, tumour necrosis factor-alpha and insulin- like growth factor 1 did not alter significantly in either intervention group. These data suggest that whilst both interventions were beneficial in older persons, the end targets as well as metabolic and hormonal adaptations are different. The supplementation plus low exercise regimen tended to impact on muscle hypertrophy combined with increased habitual function. Supplementation plus high-intensity exercise regimen improved markers of strength, but not to a significantly greater extent than supplementation plus low intensity exercise. © American Aging Association 2010

    Combined effects of body composition and ageing on joint torque, muscle activation and co-contraction in sedentary women

    Get PDF
    This study aimed to establish the interplay between body mass, adiposity, ageing and determinants of skeletal muscle strength. One hundred and two untrained healthy women categorised by age into young (Y) (mean ± SD, 26.7 ± 9.4 years) vs. old (O) (65.1 ± 7.2 years) were assessed for body fat, lean mass, plantar flexion and dorsiflexion maximum voluntary isometric contraction (MVC) torque, muscle activation capacity and antagonist muscle co-contraction. MVC torque normalised to body mass in the obese group was 35 and 29 % lower (p < 0.05) in Y and 34 and 31 % lower (p < 0.05) in O, compared with underweight and normal weight individuals, respectively. Y with ≥40 % body fat had significantly lower activation than Y with <40 % body fat (88.3 vs. 94.4 %, p < 0.05), but O did not exhibit this effect. Co-contraction was affected by ageing (16.1 % in O vs. 13.8 % in Y, p < 0.05) but not body composition. There were significant associations between markers of body composition, age, strength and activation capacity, with the strongest correlation between muscle strength and total body mass (r = 0.508 in Y, p < 0.001, vs. r = 0.204 in O, p < 0.01). Furthermore, the age-related loss in plantar flexion (PF) MVC torque was exacerbated in obese compared to underweight, normal weight and overweight individuals (-0.96 vs. -0.54, -0.57 and -0.57 % per year, p < 0.05). The negative impact of adiposity on muscle performance is associated with not only muscular but also neural factors. Overall, the effects of ageing and obesity on this system are somewhat cumulative. © 2014 The Author(s)

    A prolonged hiatus in postmenopausal HRT, does not nullify the therapy’s positive impact on ageing related sarcopenia

    Get PDF
    Background Previous work suggest a positive skeletal muscle effect of hormone replacement therapy (HRT) on skeletal muscle characteristics This study aimed to quantify any continued positive effect of HRT even after a sustained hiatus in treatment, controlling for two key muscle modulation hormones: Estradiol (E2) and Tri-iodo-thyronine (T3). Method and findings In 61 untrained women (18-78yrs) stratified as pre-menopausal, post-menopausal without (No_HRT) and post-menopausal with (Used_HRT) HRT history, body composition, physical activity, serum E2 and T3 were assessed by dual energy x-ray absorptiometry, Baecke questionnaire and ELISA. Gastrocnemius medialis (GM) and tibialis anterior (TA) electromyographic profiles (mean power frequency (mPowerF)), isometric plantar-flexion (PF) and dorsi-flexion (DF) maximum voluntary contraction (MVC), rate of torque development (RTD), isokinetic MVC and muscle volume, were assessed using surface electromyography, dynamometry and ultrasonography. Muscle quality was quantified as MVC per unit muscle size. E2 and E2:T3 ratio were significantly lower in postmenopausal participants, and were positively correlated with RTD even after controlling for adiposity and/or age. Premenopausal females had greater MVC in 8/8 PF and 2/5 DF (23.7–98.1%; P<0.001–0.049) strength measures compared to No_HRT, but only 6/8 PF (17.4–42.3%; P<0.001–0.046) strength measures compared to Used_HRT. Notably, Used_HRT had significant higher MVC in 7 PF MVC (30.0%-37.7%; P = 0.006–0.031) measures than No_HRT, while premenopausal and Used_HRT had similar uncorrected muscle size or quality. In addition, this cross-sectional data suggest an annual reduction in GM muscle volume corrected for intramuscular fat by 1.3% in No_HRT and only 0.5% in Used_HRT. Conclusion Even years after cessation of the therapy, a history of HRT is positively associated with negating the expected post-menopausal drop in muscle quantity and quality. Whilst mPowerF did not differ between groups, our work highlights positive associations between RTD against E2 and E2:T3. Notwithstanding our study limitation of single time point for blood sampling, our work is the first to illustrate an HRT attenuation of ageing-related decline in RTD. We infer from these data that high E2, even in the absence of high T3, may help maintain muscle contractile speed and quality. Thus our work is the first to points to markedly larger physiological reserves in women with a past history of HRT

    A quantitative description of self-selected walking in adults with Achondroplasia using the gait profile score.

    Get PDF
    BACKGROUND: Achondroplasia is characterised by a shorter appendicular limb-to-torso ratio, compared to age matched individuals of average stature (controls). Previous work shows gait kinematics of individuals with Achondroplasia differing to controls, but no global quantification of gait has been made in adults with Achondroplasia. AIM: The aim of this study was to quantify gait differences between a group of adult males with Achondroplasia and controls during self-selected walking (SSW) using the Gait Profile Score (GPS). DESIGN: Whole body motion analysis of 10 adults with Achondroplasia (22 ± 3 yrs) who had not undergone leg lengthening and 17 adult controls (22 ± 2 yrs) was undertaken using a 14 camera VICON system (100 Hz). For each group, fifteen root mean squared Gait Variable Scores (GVS, units °) were computed from lower limb kinematic data and then summed to calculate GPS (°). RESULTS: The group with Achondroplasia had higher GVSs than controls in 10 of the 15 measures (P < 0.05) with the largest differences found in ankle plantar/dorsiflexion (P < 0.001), knee flexion/extension (P < 0.001), and hip internal/external rotation (P < 0.001). The GPS value of the group with Achondroplasia was 64% higher than controls (11.4° (2.0) v 4.1° (1.8), P < 0.001). CONCLUSION: Gait is quantitatively different in adults with Achondroplasia compared to controls. The differences in GPS between groups are due to differences in joint kinematics, which are possibly manifested by maintaining toe-clearance during swing. Gait models derived from the anatomy of individuals with Achondroplasia may improve these data

    Morphological and mechanical properties of the human patella tendon in adult males with achondroplasia

    Get PDF
    Achondroplasia is a genetic mutation of fibroblast growth factor receptor resulting in impaired growth plate development in long bones due to lower collagen turnover. Despite the characteristic shorter stature and lower strength in Achondroplasic groups, little is known of the tendon mechanical properties under loading. The aim of this study was therefore to conduct a between measure design of patella tendon (PT) mechanical properties (stress, strain, stiffness and Young's Modulus) in 10 men with Achondroplasia (22 ± 3 years) and 17 male controls (22 ± 2 years). PT mechanical properties were measured during isometric maximal voluntary contraction (iMVC) of the knee extensors using ultrasonography. The Achondroplasic group produced 54% less stress at iMVC than controls (29.4 ± 8.0 v 64.5 ± 14.0 MPa, P 0.05). Achondroplasic PT were 47% less stiff(748 ± 93 v 1418 ± 101 N·mm-1, P < 0.001, d = 6.89) and had a 51% lower Young's modulus (0.39 ± 0.09 v 0.77 ± 0.14 GPa, P < 0.001, d = 3.46) than controls at iMVC. Achondroplasic PT are indeed more compliant than controls which may contribute to lower relative force production. The causes of higher Achondroplasic PT compliance are unclear but are likely due to the collagen related genetic mutation which causes Achondroplasia

    The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    Get PDF
    © 2018 Sims, Onambélé-Pearson, Burden, Payton and Morse. The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (VO 2 ) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal VO 2 and C during a range of set walking speeds (SWS; 0.56-1.94 m·s-1, increment 0.28 m·s -1 ), set running speeds (SRS; 1.67-3.33 m·s -1 , increment 0.28 m·s -1 ) and a self-selected walking speed (SSW). VO 2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude's number (Fr). Achondroplasic VO 2FFM x and VO 2FFM were on average 29 and 35% greater during SWS (P 0.05), but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05) in the Achondroplasic group compared to controls, respectively. VO 2TBM and VO 2FFM correlated with Fr for both groups (r = 0.984-0.999, P < 0.05). Leg length accounted for the majority of the higher VO 2TBM and VO 2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups

    The combined effects of obesity and ageing on skeletal muscle function and tendon properties in vivo in men

    Get PDF
    Purpose: We investigated the combined impact of ageing and obesity on Achilles tendon (AT) properties in vivo in men, utilizing three classification methods of obesity. Method: Forty healthy, untrained men were categorised by age (young (18–49 years); older (50–80 years)), body mass index (BMI; normal weight (≥18.5–6–9); high fat (>9). Assessment of body composition used dual-energy X-ray absorptiometry, gastrocnemius medialis (GM)/AT properties used dynamometry and ultrasonography and endocrine profiling used multiplex luminometry. Results: Older men had lower total range of motion (ROM; −11%; P = 0.020), GM AT force (−29%; P < 0.001), stiffness (−18%; P = 0.041), Young’s modulus (−22%; P = 0.011) and AT stress (−28%; P < 0.001). All three methods of classifying obesity revealed obesity to be associated with lower total ROM (P = 0.014–0.039). AT cross sectional area (CSA) was larger with higher BMI (P = 0.030). However, after controlling for age, higher BMI only tended to be associated with greater tendon stiffness (P = 0.074). Interestingly, both AT CSA and stiffness were positively correlated with body mass (r = 0.644 and r = 0.520) and BMI (r = 0.541 and r = 0.493) in the young but not older adults. Finally, negative relationships were observed between AT CSA and pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. Conclusions: This is the first study to provide evidence of positive adaptations in tendon stiffness and size in vivo resulting from increased mass and BMI in young but not older men, irrespective of obesity classification

    Influence of exercise intensity on training-induced tendon mechanical properties changes in older individuals

    Get PDF
    This study compared the effects of low vs. high intensity training on tendon properties in an elderly population. Participants were pair-matched (gender, habitual physical activity, anthropometrics, and baseline knee extension strength) and then randomly assigned to low (LowR, i.e., ∼40 % 1RM) or high (High R, i.e., ∼80 % 1RM) intensity resistance training programmes for 12 weeks, 3x per week (LowR, n = 9, age 74 ± 5 years; HighR, n = 8, age 68 ± 6 years). Patellar tendon properties (stiffness [K], Young's modulus [YM], cross-sectional area [T CSA], and tendon length [T L]) were measured pre and post training using a combination of magnetic resonance imaging (MRI), B-mode ultrasonography, dynamometry, electromyography and ramped isometric knee extensions. With training K showed no significant change in the LowR group while it incremented by 57.7 % in the HighR group (p < 0.05). The 51.1 % group difference was significant (p < 0.05). These differences were still apparent when the data was normalized for T CSA and T L, i.e., significant increase in YM post-intervention in HighR (p < 0.05), but no change in LowR. These findings suggest that when prescribing exercise for a mixed genders elderly population, exercise intensities of ≤40 % 1RM may not be sufficient to affect tendon properties. © 2014 American Aging Association

    Oral contraceptive pill use and the susceptibility to markers of exercise-induced muscle damage

    Get PDF
    © 2017, The Author(s). Purpose: Firstly, to establish whether oral contraceptive pill (OCP) users are more susceptible to muscle damage compared to non-users, and secondly, to establish whether differences can be attributed to differences in patella tendon properties. Methods: Nine female OCP users and 9 female non-users participated in the investigation. Combining dynamometry, electromyography and ultrasonography, patella tendon properties and vastus lateralis architectural properties were measured pre and during the first of 6 sets of 12 maximal voluntary eccentric knee extensions. Serum oestrogen levels were measured on the 7th day of the pill cycle and the 14th day of menstrual cycle in OCP users and non-users, respectively. Maximal voluntary isometric knee extension torque loss, creatine kinase and muscle soreness were measured 48 h pre-damage, post-damage, and 48, 96 and 168 h post-damage. Results: Oestrogen levels were significantly lower in OCP users compared to non-users (209 ± 115 and 433 ± 147 pg/ml, respectively, p = 0.004). Proposed determinants of muscle damage, patella tendon stiffness and maximal eccentric torque did not differ between OCP users and non-users. The change in creatine kinase from pre to peak was significantly higher in OCP users compared to non-users (962 ± 968 and 386 ± 474 Ul, respectively, p = 0.016). There were no other differences in markers of muscle damage. Conclusion: Although our findings suggest that, when compared to non-users, the OCP may augment the creatine kinase response following eccentric exercise, it does not increase the susceptibility to any other markers of muscle damage

    Omega-3 fatty acids and vitamin D in immobilisation: Part A - Modulation of appendicular mass content, composition and structure

    Get PDF
    Objectives: Muscle size decreases in response to short-term limb immobilisation. This study set out to determine whether two potential protein-sparing modulators (eicosapentaenoic acid and vitamin D) would attenuate immobilisation-induced changes in muscle characteristics. Design: The study used a randomised, double-blind, placebo-controlled design. Setting: The study took part in a laboratory setting. Participants: Twenty-four male and female healthy participants, aged 23.0±5.8 years. Intervention: The non-dominant arm was immobilised in a sling for a period of nine waking hours a day over two continuous weeks. Participants were randomly assigned to one of three groups: placebo (n=8, Lecithin, 2400 mg daily), omega-3 (ω-3) fatty acids (n=8, eicosapentaenoic acid (EPA); 1770 mg, and docosahexaenoic acid (DHA); 390 mg, daily) or vitamin D (n=8, 1,000 IU daily). Measurements: Muscle and sub-cutaneous adipose thickness (B-mode ultrasonography), body composition (DXA) and arm girth (anthropometry) were measured before immobilisation, immediately on removal of the sling and two weeks after re-mobilisation. Results: Muscle thickness (-5.4±4.3%), upper and lower arm girth (-1.3±0.4 and -0.8±0.8%, respectively), lean mass (-3.6±3.7%) and bone mineral content (BMC) (-2.3±1.5%) decreased significantly with limb immobilisation in the placebo group (P0.05) towards attenuating the decreases in muscle thickness, upper/lower arm girths and BMC observed in the placebo group. The ω-3 supplementation group demonstrated a non-significant attenuation of the decrease in DXA quantified lean mass observed in the placebo group. Sub-cutaneous adipose thickness increased in the placebo group (P<0.05). ω-3 and vitamin D both blunted this response, with ω-3 having a greater effect (P<0.05). All parameters had returned to baseline values at the re-mobilisation phase of the study. Conclusion: Overall, at the current doses, ω-3 and vitamin D supplementation only attenuated one of the changes associated with non-injurious limb immobilisation. These findings would necessitate further research into either a) supplementation linked to injury-induced immobilisation, or b) larger doses of these supplements to confirm/refute the physiological reserve potential of the two supplements
    corecore