114 research outputs found

    Localization of Relative-Position of Two Atoms Induced by Spontaneous Emission

    Full text link
    We revisit the back-action of emitted photons on the motion of the relative position of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the localization of the relative position of the two atoms through the entanglement between the spatial motion of individual atoms and their emitted photons. The result provides a more realistic model for the analysis of the environment-induced localization of a macroscopic object.Comment: 8 pages and 4 figure

    Extraction of scattering lengths from final-state interactions

    Get PDF
    A recently proposed method based on dispersion theory, that allows to extract the scattering length of a hadronic two-body system from corresponding final-state interactions, is generalized to the situation where the Coulomb interaction is present. The steps required in a concrete practical application are discussed in detail. In addition a thorough examination of the accuracy of the proposed method is presented and a comparison is made with results achieved with other methods like the Jost-function approach based on the effective-range approximation. Deficiencies of the latter method are pointed out. The reliability of the dispersion theory method for extracting also the effective range is investigated.Comment: 16 pages, 6 figures, some corrections to text, to appear in Phys. Rev.

    Consistent Histories in Quantum Cosmology

    Get PDF
    We illustrate the crucial role played by decoherence (consistency of quantum histories) in extracting consistent quantum probabilities for alternative histories in quantum cosmology. Specifically, within a Wheeler-DeWitt quantization of a flat Friedmann-Robertson-Walker cosmological model sourced with a free massless scalar field, we calculate the probability that the univese is singular in the sense that it assumes zero volume. Classical solutions of this model are a disjoint set of expanding and contracting singular branches. A naive assessment of the behavior of quantum states which are superpositions of expanding and contracting universes may suggest that a "quantum bounce" is possible i.e. that the wave function of the universe may remain peaked on a non-singular classical solution throughout its history. However, a more careful consistent histories analysis shows that for arbitrary states in the physical Hilbert space the probability of this Wheeler-DeWitt quantum universe encountering the big bang/crunch singularity is equal to unity. A quantum Wheeler-DeWitt universe is inevitably singular, and a "quantum bounce" is thus not possible in these models.Comment: To appear in Foundations of Physics special issue on quantum foundation

    Quantum Dynamical Model for Wave Function Reduction in Classical and Macroscopic Limits

    Full text link
    In this papper, a quantum dynamical model describing the quantum measurement process is presented as an extensive generalization of the Coleman-Hepp model. In both the classical limit with very large quantum number and macroscopic limit with very large particle number in measuring instrument, this model generally realizes the wave packet collapse in quantum measurement as a consequence of the Schrodinger time evolution in either the exactly-solvable case or the non-(exactly-)solvable case. For the latter, its quasi-adiabatic case is explicitly analysed by making use of the high-order adiabatic approximation method and then manifests the wave packet collapse as well as the exactly-solvable case. By highlighting these analysis, it is finally found that an essence of the dynamical model of wave packet collapse is the factorization of the Schrodinger evolution other than the exact solvability. So many dynamical models including the well-known ones before, which are exactly-solvable or not, can be shown only to be the concrete realizations of this factorizabilityComment: ITP.SB-93-14,19 page

    Lambda-N scattering length from the reaction gamma d -> K^+ Lambda n

    Full text link
    The perspects of utilizing the strangeness-production reaction gamma d -> K^+ Lambda n for the determination of the Lambda n low-energy scattering parameters are investigated. The spin observables that need to be measured in order to isolate the Lambda n singlet (1S0) and triplet (3S1) states are identified. Possible kinematical regions where the extraction of the Lambda n scattering lengths might be feasible are discussed.Comment: 8 pages, 4 figure

    Dynamical suppression of decoherence in two-state quantum systems

    Get PDF
    The dynamics of a decohering two-level system driven by a suitable control Hamiltonian is studied. The control procedure is implemented as a sequence of radiofrequency pulses that repetitively flip the state of the system, a technique that can be termed quantum "bang-bang" control after its classical analog. Decoherence introduced by the system's interaction with a quantum environment is shown to be washed out completely in the limit of continuous flipping and greatly suppressed provided the interval between the pulses is made comparable to the correlation time of the environment. The model suggests a strategy to fight against decoherence that complements existing quantum error-correction techniques.Comment: 15 pages, RevTeX style, 3 figures. Submitted to Phys. Rev.

    How Events Come Into Being: EEQT, Particle Tracks, Quantum Chaos, and Tunneling Time

    Get PDF
    In sections 1 and 2 we review Event Enhanced Quantum Theory (EEQT). In section 3 we discuss applications of EEQT to tunneling time, and compare its quantitative predictions with other approaches, in particular with B\"uttiker-Larmor and Bohm trajectory approach. In section 4 we discuss quantum chaos and quantum fractals resulting from simultaneous continuous monitoring of several non-commuting observables. In particular we show self-similar, non-linear, iterated function system-type, patterns arising from quantum jumps and from the associated Markov operator. Concluding remarks pointing to possible future development of EEQT are given in section 5.Comment: latex, 27 pages, 7 postscript figures. Paper submitted to Proc. Conference "Mysteries, Puzzles And Paradoxes In Quantum Mechanics, Workshop on Entanglement And Decoherence, Palazzo Feltrinelli, Gargnano, Garda Lake, Italy, 20-25 September, 199

    Complex Probabilities on R^N as Real Probabilities on C^N and an Application to Path Integrals

    Get PDF
    We establish a necessary and sufficient condition for averages over complex valued weight functions on R^N to be represented as statistical averages over real, non-negative probability weights on C^N. Using this result, we show that many path-integrals for time-ordered expectation values of bosonic degrees of freedom in real-valued time can be expressed as statistical averages over ensembles of paths with complex-valued coordinates, and then speculate on possible consequences of this result for the relation between quantum and classical mechanics.Comment: 4 pages, 0 figure

    What is "system": the information-theoretic arguments

    Full text link
    The problem of "what is 'system'?" is in the very foundations of modern quantum mechanics. Here, we point out the interest in this topic in the information-theoretic context. E.g., we point out the possibility to manipulate a pair of mutually non-interacting, non-entangled systems to employ entanglement of the newly defined '(sub)systems' consisting the one and the same composite system. Given the different divisions of a composite system into "subsystems", the Hamiltonian of the system may perform in general non-equivalent quantum computations. Redefinition of "subsystems" of a composite system may be regarded as a method for avoiding decoherence in the quantum hardware. In principle, all the notions refer to a composite system as simple as the hydrogen atom.Comment: 13 pages, no figure

    On the origin of the large scale structures of the universe

    Full text link
    We revise the statistical properties of the primordial cosmological density anisotropies that, at the time of matter radiation equality, seeded the gravitational development of large scale structures in the, otherwise, homogeneous and isotropic Friedmann-Robertson-Walker flat universe. Our analysis shows that random fluctuations of the density field at the same instant of equality and with comoving wavelength shorter than the causal horizon at that time can naturally account, when globally constrained to conserve the total mass (energy) of the system, for the observed scale invariance of the anisotropies over cosmologically large comoving volumes. Statistical systems with similar features are generically known as glass-like or lattice-like. Obviously, these conclusions conflict with the widely accepted understanding of the primordial structures reported in the literature, which requires an epoch of inflationary cosmology to precede the standard expansion of the universe. The origin of the conflict must be found in the widespread, but unjustified, claim that scale invariant mass (energy) anisotropies at the instant of equality over comoving volumes of cosmological size, larger than the causal horizon at the time, must be generated by fluctuations in the density field with comparably large comoving wavelength.Comment: New section added; final version to appear in Physical Review D; discussion extended and detailed with new calculations to support the claims of the paper; statistical properties of vacuum fluctuations now discussed in the context of FRW flat universe; new important conclussions adde
    • …
    corecore