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Extraction of scattering lengths from final-state interactions
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A recently proposed method, based on dispersion theory, that allows the scattering length of a hadronic
two-body system to be extracted from corresponding final-state interactions is generalized to the situation where
the Coulomb interaction is present. The steps required in a concrete practical application are discussed in detail.
In addition a thorough examination of the accuracy of the proposed method is presented and a comparison is
made with results achieved with other methods such as the Jost-function approach based on the effective-range
approximation. Deficiencies of the latter method are pointed out. The reliability of the dispersion theory method
for also extracting the effective range is investigated.
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I. INTRODUCTION

The scattering length not only provides an important
measure for the strength of the interaction in a specific hadronic
two-body system [1] but often allows us to draw further
more general and thus even more interesting conclusions. For
example, in the case of the proton-proton and neutron-neutron
systems the corresponding scattering lengths in the 1S0 partial
wave provide a very sensitive test of charge symmetry in
the strong interaction [2]. SU(3) symmetry can be tested by
comparing the 1S0 scattering lengths in the neutron-proton and
�+p systems, which should fulfill the relation anp = a�+p

when SU(3) symmetry holds rigorously [3]. In the chiral
limit the πN S-wave scattering lengths vanish and therefore
any deviation from that value is a direct measure of how
strongly this symmetry is broken. Here especially the isoscalar
component is significant because of its close link to the � term
of the nucleon [4]. On a more phenomenological level the ηN

scattering length is interesting because the magnitude of its
real part is directly linked with speculations about the existence
of η-mesonic hadronic bound states such as η3He [5–11] or
η4He [12].

Unfortunately, a direct determination of the scattering
length is only feasible in a few cases. It can be done with scat-
tering experiments sufficiently close to the reaction threshold
so that the effective range expansion can be utilized for extract-
ing the scattering length. But in practice such experiments are
only possible for charged and also (quasi) stable particles, as is
the case with, for example, pp, π+p, or K+p scattering.
One can also extract the scattering length from a study of
the hadronic level shifts of atoms [13] such as π−p, π−d, or
also p̄p [14]. For the majority of hadronic two-body systems
information about the scattering length is only accessible via
an investigation of the final-state interaction of systems that
have at least three particles in the final state.

Whereas in the former type of experiments the accuracy of
the scattering length is directly connected with the precision of
the data, more detailed and often sophisticated considerations
are necessary to estimate additional uncertainies that arise
when the scattering length is extracted from final-state effects
[15]. However, in some cases such an estimation is facilitated

by the fact that the reaction mechanism is known. For example,
the reaction nd → (nn)p, one of the prime sources of the
nn scattering length, can be analyzed by means of rigorous
Faddeev calculations [16–18]. Reactions involving the pion
such as πd, π−d → γ nn or γ d → π+nn, which can be used
to extract the πN and nn scattering lengths, respectively, can
be tackled by chiral perturbation theory in a well-controlled
way in the relevant near-threshold regime [19,20].

In a recent publication [21] we argued that also large-
momentum transfer reactions such as pp → K+p� [22–24]
or γ d → K+n� [25–30] are excellent candidates for extract-
ing scattering lengths information. In reactions with large
momentum transfer the production process is necessarily
of a short-range nature. As a consequence, the results are
basically insensitive to details of the production mechanism
and therefore reliable and general error estimation can be
given. Indeed, in Ref. [21] a formalism based on dispersion the-
ory was presented that relates spectra from large-momentum
transfer reactions, such as pp → K+p� or γ d → K+n�,
directly to the scattering length of the interaction of the
final-state particles. The theoretical error of the method was
estimated to be 0.3 fm or even less, which is comparable
to the error quoted in the context of the determination of
ann [31]. This estimate was confirmed by comparing results
obtained with the proposed formalism to those of microscopic
model calculations for the specific reaction pp → K+�p.
The arguments but also the formalism of Ref. [21] are, of
course, valid for any production or decay process that is of a
short-range nature, that is, also for investigation of hadronic
two-particle subsystems resulting from the decay of the J/�

or B mesons [32,33].
In the present paper we want to investigate further aspects of

extracting scattering lengths from final-state interactions that
were not addressed in our earlier work. One of those topics is
the presence of the Coulomb interaction. In many interesting
hadronic two-particle systems both particles carry charges, as
in the aforementioned �+p channel whose scattering length
could be extracted from the reaction pp → K0�+p. Then
the production amplitude acquires additional singularities,
owing to the long-range nature of the Coulomb force, and
the formalism developed in Ref. [21] is no longer directly
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applicable. We will derive the modifications necessary to
adapt the dispersion-relation method to the situation when
the Coulomb force is present in the final-state interaction. We
also demonstrate in a toy model calculation how one has to
proceed in a concrete application to data.

In addition we present a more detailed examination of
the accuracy of the method proposed in Ref. [21]. A test
based on one specific model calculation, namely for the
reaction pp → K+�p, has been already performed in that
paper. However, here we want to put this investigation on a
broader basis by considering final-state interactions of varying
strengths, corresponding to a much larger range of values
of the scattering length. In addition we take a look at the
effective range re as well, which can be also extracted by
the proposed dispersion-integral method. For the effective
range a sensible error estimation is not possible, as was
already pointed out in Ref. [21], but it is still interesting to
examine in concrete applications whether meaningful results
could be achieved. Finally, and equally important, we want to
compare the present method with the performance of other,
approximative treatments of the final-state interaction that
are commonly used in the literature to extract information
on the scattering length and also the effective range. This
concerns in particular the Jost-function approach [34] based
on the effective-range approximation and an even simpler
approach that relies simply on utilizing the effective-range
approximation itself [35]. Thereby, we will show that the latter
methods lead to (partly drastic) systematic deviations from the
true values and therefore one has to be rather cautious in the
interpretation of results achieved with those methods.

The paper is structured in the following way: In the
subsequent section we give a short review of the dispersion
integral method for extracting the scattering length from
final-state interactions. In Sec. III results of an examination
of the accuracy of this method are presented. Thereby,
we consider various (singlet and triplet) S wave YN and
NN interactions and compare the scattering lengths and
effective range extracted with the dispersion-integral method
from appropriately generated final-state effects with the ones
predicted by the models. We also apply two approximative
methods for treating final-state effects, namely the Jost-
function approach based on the effective-range approximation
(Jost-ERA) and the effective-range approximation itself, and
compare their performance with that of our method. In Sec. IV
we generalize the dispersion-integral method to the case where
a repulsive Coulomb interaction is present in the final state.
Test calculations for a final-state interaction including the
Coulomb force are then presented in Sec. V and it is discussed
in detail how one has to proceed in a practical application. The
paper ends with a short summary.

II. FORMALISM

Our method, which goes back to an idea of Geshkenbein
[36,37], is based on using the dispersion-relation technique.
Consider the production amplitude AS of a 2 → 3 reaction. To
be concrete we discuss pp → K+p�, or γ d → K+n�, with
the �N system being in an L = 0 partial wave and a specific

spin state S (1S0 or 3S1). This amplitude depends on the total
energy squared, s = (p1 + p2)2, the invariant mass squared
of the outgoing �N system, m2 = (pN + p�)2, and the
momentum transfer t = (p1 − pK+ )2, where p1, p2, pN, p�,
and pK+ are the 4-momenta of the two initial particles, final
nucleon, lambda, and kaon, respectively. Then one can write
down a dispersion relation for this amplitude with respect to
m2 at fixed s and t:

AS(s, t,m2) = 1

π

∫ m̃2

−∞

DS(s, t,m′2)

m′2 − m2
dm′2

+ 1

π

∫ ∞

m2
0

DS(s, t,m′2)

m′2 − m2
dm′2, (1)

where m̃2 is the upper boundary of the left-hand cut, m2
0 =

(mN + m�)2, and

DS(s, t,m2) = 1

2i
[AS(s, t,m2 + i0) − AS(s, t,m2 − i0)]

(2)

is the discontinuity of the amplitude along the cuts. We
neglect here the contributions from possible kaon-baryon
interactions. In case they are not small, they still can be
considered as constant (weakly mass dependent) if one chooses
the kinematics such that the excess energy of the reaction
is significantly larger than the typical range of the �N

interaction, (cf. the discussion in Ref. [21]). The index S
denoting the spin state will be suppressed in the following
to simplify the notation.

For a purely elastic �N system, the discontinuity along the
right-hand cut would be given by

D(s, t,m2) = A(s, t,m2)e−iδ sin δ, (3)

where δ is the �N (1S0 or 3S1) scattering phase shift. Then
the solution of Eq. (1) in the physical region reads (see
Refs. [38–40])

A(s, t,m2) = exp

[
1

π

∫ ∞

m2
0

δ(m′2)

m′2 − m2 − i0
dm′2

]
�(s, t, m2),

(4)

where �(s, t,m2) contains only left-hand singularities and
therefore is a slowly varying function of m2. To ensure
the fulfillment of this requirement it is important that the
momentum transfer t be large. We assume also that there is
no bound state in the �N system.

Consider now a realistic situation where inelastic channels
are present—as is the case with �N owing to the coupling
to the �N channel, say. Then one can write down a formula
similar to Eq. (1), but with the integration performed over a
finite range of masses [21]:

A(m2) = exp

[
1

π

∫ m2
max

m2
0

δ(m′2)

m′2 − m2 − i0
dm′2

]
�̃(m2), (5)

where �̃(m2) is again a slowly varying function of m2 given
a sufficiently small phase shift δ in the vicinity of mmax [21].
The upper limit mmax has to be chosen in such a way that the
corresponding relative momentum of the �N system, pmax, is
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of the order of the typical scale of the �N interaction, that is,
of the order of 1/a or 1/r . Equation (5) can be solved with
respect to δ [21]:

δ(m2)√
m2 − m2

0

= − 1

2π
P

∫ m2
max

m2
0

log
∣∣A(m′2)

/
�̃

(
m2

max,m
′2)∣∣2√

m′2 − m2
0(m′2 − m2)

×
√

m2
max − m2

m2
max − m′2 dm′2. (6)

If one neglects the mass dependence of �̃(m2) and uses the
relation between the partial cross section σS and the amplitude,

d2σS

dm′2dt
∝ p′|AS(s, t,m′2)|2,

one obtains the expression for the scattering length in terms of
observables,

aS = lim
m2→m2

0

1

2π

(
m� + mN√

m�mN

)
P

∫ m2
max

m2
0

dm′2
√

m2
max − m2

m2
max − m′2

× 1√
m′2 − m2

0(m′2 − m2)
log

{
1

p′

(
d2σS

dm′2dt

)}
, (7)

and analogously for the effective range re.

III. ACCURACY OF THE METHOD AND COMPARISON
WITH OTHER APPROACHES

The most important advantage of the method proposed
by us [21] is that a reliable estimate for the uncertainty of
the extracted scattering length can be given. There are three
sources for the uncertainty: (i) a possible influence of the
final-state interaction in the other outgoing channels (for the
reaction pp → K+�p considered in Ref. [21] this concerns
the K� and KN systems); (ii) the adopted value for m2

max, the
upper limit chosen for the dispersion integral in Eq. (7); and
(iii) a sensitivity to left-hand cuts of the production operation.
A detailed analysis of issues (ii) and (iii), based on general
arguments, presented in Ref. [21] suggests that the error in the
scattering length should be typically of the order of 0.3 fm or
less. The role of issue (i) cannot be quanitified theoretically
but has to be investigated by performing experiments and
corresponding analyses at different beam momenta [21].

In this section we want to present a thorough examination
of the accuracy of the proposed method and, in particular, to
corroborate the error estimate, by means of concrete model
calculations. A test based on one specific model calculation,
namely for the reaction pp → K+�p, has already been
performed in Ref. [21]. However, here we want to put this
investigation on a broader basis by considering final-state
interactions of varying strengths, corresponding to a much
larger range of values of the scattering length. Furthermore,
and equally important, we want to compare the present method
with the performance of other, approximative treatments of the
final-state interaction that are commonly used in the literature
to extract information on the scattering length and the effective
range and that have been applied to pp → K+�p [41,42].

One of those approximative treatments follows from the
assumption that the phase shifts are given by the first two
terms in the effective-range expansion,

p cot(δ(m2)) = −1

a
+ re

2
p 2, (8)

usually called the effective range approximation (ERA), over
the whole energy range. Here p is the relative momentum of the
final-state particles under consideration in their center-of-mass
system, corresponding to the invariant mass m2. In this case the
relevant integrals (4) can be evaluated in closed form as [34]

A(m2) ∝ (p2 + α2)re/2

−1/a + (re/2)p2 − ip
, (9)

where α = 1/re(1 + √
1 − 2re/a). Because of its simplicity

Eq. (9) is often used for the treatment of the final-state
interaction (FSI).

A further simplification can be made if one assumes that
a � re. This situation is practically realized in the 1S0 partial
wave of the NN system. Then the energy dependence of the
quantity in Eq. (9) is given by the energy dependence of the
elastic amplitude

A(m2) ∝ 1

−1/a + (re/2)p2 − ip
, (10)

as long as p � 1/re. Therefore one expects that, at least
for small kinetic energies, NN elastic scattering and meson
production in NN collisions with a NN final state exhibit
the same energy dependence [34,35], which indeed was
experimentally confirmed. This treatment of FSI effects is
often referred to as Migdal-Watson (MW) approach [35].

To examine the reliability of the three methods just
described we took different YN models from the literature
[43–46] and calculated the production amplitude A(m2) utiliz-
ing the meson exchange model from Ref. [47]. This amplitude
was then used for extracting the scattering length by means
of the dispersion integral Eq. (7) or from the approximative
prescriptions given by Eqs. (9) and (10). For comparison we
considered also the 1S0 partial wave of the np system of
the Argonne potential [48]. In this case A(m2) was set equal
to the scattering wave function �(p, r) at the origin, more
precisely to �−(p, 0)∗, which corresponds to the assumption
that the production operator is pointlike.

Some selective results (for the Nijmegen NSC97 [44] and
Jülich 01 [45] YN models and the Argonne v14 [48] NN

potential) are summarized in Table I. The second column
lists the correct scattering length evaluated directly from
the potential model. One can see that the extraction of the
scattering length via the dispersion integral (7) yields results
pretty close to the original values for all considered potentials.
In fact, in most cases the deviation is significantly smaller than
the uncertainty of the method, estimated in Ref. [21] to be
0.3 fm. The results of the Jost-ERA approach, Eq. (9), exhibit
a systematic offset of the order of 0.3 fm. The situation is much
worse for the MW approach, Eq. (10), where a similar offset
is found though now of the order of 0.6 fm. As a consequence,
the extracted values differ by 50% or more from the correct
scattering lengths. Only for the 1S0 np partial wave does the
disagreement remain of the order of 5%. Here the reliability
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TABLE I. S-wave scattering lengths a (in fm) for various YN [44,45] and NN [48] potentials. The
results for the original models are compared with those obtained by applying the dispersion-integral
method (7) and the approximations of Eq. (9) (Jost-ERA) and Eq. (10) (MW).

Model Exact result Dispersion integral Jost-ERA MW

Jülich 01 singlet −1.02 −1.03 −1.28 −1.67
Nijmegen 97a singlet −0.73 −0.75 −0.98 −1.33
Nijmegen 97f singlet −2.59 −2.57 −2.96 −3.35
Jülich 01 triplet −1.89 −1.66 −2.05 −2.42
Nijmegen 97a triplet −2.13 −1.98 −2.37 −2.75
Nijmegen 97f triplet −1.69 −1.61 −2.00 −2.37
Argonne v14 singlet −23.71 −23.54 −24.56 −24.79

of the Jost-ERA and MW approaches are comparable. This is
in agreement with the aforementioned expectations.

The systematic offset inherent in the Jost-ERA approach
as well as in the MW prescription can be best seen in Fig. 1,
where we shown the difference between the scattering lengths
predicted by various models and the values extracted via the
dispersion-integral method (circles), the Jost-ERA method
(squares), and the MW prescription (triangles).

Although the Jost-ERA approach might still be a reasonable
tool for getting a first rough estimate of the scattering length for
a particular two-body interaction one should be rather cautious
when using it for more quantitative analyses. In particular,
its application in a combined fit to elastic scattering data
and invariant mass spectra (e.g., to �p and pp → K+�p)
is rather problematic and can easily cause misleading results.
Because of the offset in the scattering length in applications
to final-state effects it is clear that a combined fit cannot
converge to a unique (“true”) �p scattering length. Only the
elastic data will favor values close to the “true” scattering
length, whereas the production data tend to support larger
(negative) values. This is obvious from the corresponding
Jost-ERA results presented in Table I and also from Fig. 1.

23.71 1.02 0.73 2.59 1.89 2.13 1.69
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FIG. 1. (Color online) Comparison of different extraction meth-
ods for the scattering length a. Shown are the differences among
results predicted by various YN and NN models and corresponding
values extracted via the dispersion integral method (circles), the
Jost-ERA approach (9) (squares), and the MW prescription (10)
(triangles). The lines are drawn to guide the eye.

We believe that the analysis of Hinterberger and Sibirtsev
presented in Ref. [42] is an instructive exemplification of this
dilemma. Employing the Jost-ERA approach to low-energy
total �p cross sections [49,50] and to experimental results for
the missing-mass spectrum of the reaction pp → K+X [51]
separately, they derived (spin-averaged) scattering lengths of
a = −1.81+0.18

−0.21 and −2.57+0.20
−0.23 fm, respectively. Taking into

account the error bars we see that this is roughly the difference
we would expect from the offset (of around 0.3 fm) seen in
our test calculations and, therefore, one must consider the
results as being practically consistent with each other. But
the authors of Ref. [42] attempted to “reconcile” the results
even more by introducing a spin dependence in the fitting
procedure. Indeed, with the relative magnitude of singlet
to triplet contribution in the production reaction as a free
parameter (their relative strength in the elastic channel being
fixed at 1:3 by the spin weight!) a “fully consistent” description
of the combined data could be achieved [42] and apparently
the spin-singlet as well as spin-triplet �p S-wave scattering
lengths could be determined from spin-averaged observables.
Our experience with the Jost-ERA approach reported here,
however, strongly suggests that the sensitivity to the spin seen
in this analysis is most likely just an artifact of the method
applied.

Let us now come to the effective range re. Since the
dispersion relations yield only an integral representation for
the product a2((2/3)a − re), but not for the effective range
re alone [21], it follows that the attainable accuracy of re is
always limited roughly by twice the relative error on a. Still,
it is interesting to see what values one gets for re from the
dispersion integrals. Corresponding results are presented in
Table II and in Fig. 2. Evidently, the values extracted via the
dispersion integral agree much better with the original results
as one might have expected. In fact, in practically all cases the
deviation is of the order of only 5% or even less. This suggests
that one could use the dispersion integrals also to extract the
effective range re from the data. But one should keep in mind
that, unlike the case of the scattering length, now one cannot
rely on a solid and general estimate of the uncertainty. As far
as the Jost-ERA approach is concerned it is clear from Table II
that it yields rather poor results. In case of the MW prescription
(10) it turned out that the fit always prefers an effective range
re equal to zero. This is due to the term proportional to r2

e p4

in the denominator of the A(m2), which makes the production
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TABLE II. S-wave effective ranges re (in fm) for various YN [44,45] and NN [48] potentials. The
results for the original models are compared with those obtained by applying the dispersion-integral
method (7) and the approximation of Eq. (9) (Jost-ERA).

Model Exact result Dispersion integral Jost-ERA

Jülich 01 singlet 4.49 4.31 2.48
Nijmegen 97a singlet 6.01 4.78 2.81
Nijmegen 97f singlet 3.05 2.82 1.60
Jülich 01 triplet 2.57 2.49 1.89
Nijmegen 97a triplet 2.74 2.60 1.70
Nijmegen 97f triplet 3.34 2.67 1.69
Argonne v14 singlet 2.78 2.91 0.43

cross section decrease too fast as compared to the data (or to
our calculations with realistic models). Therefore we do not
show any results of the MW fit for re.

One should note here that the upper limit in the dispersion
integrals was always taken such that pmax = 205 MeV/c (as
in Ref. [21]), which corresponds to εmax ≡ mmax − m0 ≈
40 MeV for the �N and �N systems and εmax ≈ 45 MeV
for the NN system. In the latter case it is interesting to see
what happens if one varies the range of integration, since
the energy structure in the NN interaction is much narrower
owing to the large NN scattering length. For εmax = 10 and
20 MeV as upper limits of the integration one gets the scatter-
ing lengths a = −22.62 and −23.17 fm, respectively, which
are in principle still close to the original value. For the effective
range, however, the calculation yields re = 4.78 and 3.72 fm,
respectively. The reason why the agreement for εmax >

40 MeV is so good is that the NN 1S0 phase shift becomes
sufficiently small at such energies, which implies a small
uncertainty according to the error estimation in Ref. [21].

2.78 4.49 6.01 3.05 2.57 2.74 3.34
r
model

 [fm]

0

1

2

3

r ex
tr

ac
te

d-r
m

od
el

[f
m

]

np NΛ (S=0) NΛ (S=1)

|
|

FIG. 2. (Color online) Comparison of different extraction meth-
ods for the effective range re. Shown are the differences among
results predicted by various YN and NN models and corresponding
values extracted via the dispersion integral method (circles) and the
Jost-ERA approach (9) (squares). The lines are drawn to guide the
eye.

IV. DISPERSION RELATION IN THE PRESENCE OF
COULOMB REPULSION

In the case when both baryons in the final state carry
charges (for example, in the reaction pp → K0p�+) there
is a Coulomb interaction between them. Then the production
amplitude A(m2) acquires additional singularities at p = 0,
owing to the long-range nature of the Coulomb force, and the
formalism developed in Sec. II is no longer applicable directly.
In this section we describe the modifications necessary to
adapt the dispersion-relation method to the situation when
the Coulomb force is present in the final-state interaction. We
restrict ourselves to the case of a repulsive Coulomb interaction
so that no bound states are present.

To elucidate the principle idea we start with the case
of elastic (two-body) scattering. Here the problem can be
most conveniently dealt with by applying the Gell-Mann-
Goldberger two-potential formalism [52]. Let us assume that
the total potential V = Vc + Vs is given by the sum of a short-
ranged hadronic potential Vs and the Coulomb interaction
Vc. Then the total reaction amplitude T can be written as
T = Tc + Tcs , where Tc is the Coulomb amplitude and Tcs

is defined by

Tcs = (1 + TcG0)tcs(1 + G0Tc), (11)

where tcs fulfills a Lippmann-Schwinger equation,

tcs = Vs + VsGctcs, (12)

with the short-range potential Vs as driving term. To obtain the
physical on-shell amplitudes one needs to project the corre-
sponding T operators on the so-called Coulombian asymptotic
states |p∞±〉, which are related to the Coulomb scattering
states (with fixed angular momentum—in our case l = 0)
|p±〉c via |p±〉c = |p∞±〉 + G±

0 T ±
c |p∞±〉 [53]. Here p

denotes the center-of-mass momentum in the baryon-baryon
system. In this way one obtains in particular

c〈p−| tcs |p+〉c = − 1

πµ
fcs(p), (13)

where fcs is the so-called Coulomb-modified nuclear scatter-
ing amplitude and µ is the reduced mass. Its relation to the
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phase shift δcs is the following:

fcs = e2iδc (e2iδcs − 1)

2ip
, (14)

with δc denoting the pure Coulomb S-wave phase shift given
by δc = arg (�(1 + iη)) with η = µe2/p.

It has been shown in Ref. [54] under rather general assump-
tions that the modified amplitude f̃ (p) = e−2iδcfcs(p)/C2(p)
is free of Coulomb singularities on the physical sheet and
possesses only singularities caused by dynamical cuts (see
also Refs. [55–58]). In addition below the inelastic cuts and
above the two-baryon threshold the modified unitarity relation
reads

f̃ (s + i0) − f̃ (s − i0) = 2ipf̃ (p)f̃ ∗(p)C2(p), (15)

with C2(p) = 2πη/(e2πη − 1) being the Coulomb penetration
factor.

Furthermore, an effective-range function, modified for the
presence of the Coulomb interaction, can be defined as well.
It is given by

S(p) ≡ pC2(p) cot δcs(p) + Q(p) = −1/acs + rep
2/2 + . . . ,

(16)

where Q(p) ≡ µe2[ψ(iη) + ψ(−iη) − 2 ln η] and ψ(z) =
�′(z)/�(z).

Returning now to the production reaction we can analo-
gously show that the modified production amplitude

Ã(m2) = e−iδcA(m2)/C(p) (17)

is also free of the aforementioned singularities [54]. Therefore
a dispersion relation similar to Eq. (1) can be written as

Ã(m2) = 1

π

∫ m̃2

−∞

D̃(m′2)

m′2 − m2
dm′2 + 1

π

∫ ∞

m2
0

D̃(m′2)

m′2 − m2
dm′2.

(18)

Unitarity implies that the discontinuity for the elastic cut is

D̃(m2) = Ã(m2)e−iδcs sin δcs . (19)

The solution to Eq. (18), found in complete analogy to the case
without the presence of the Coulomb interaction, is

Ã(m2) = exp

[
1

π

∫ m2
max

m2
0

δcs(m′2)

m′2 − m2 − i0
dm′2

]
�̃(m2), (20)

where �̃(m2) is some function slowly varying with m2. If
one neglects the weak m2 dependence present in �̃(m2) the
expression for the phase shift δcs in terms of the differential
cross section becomes

δcs(m2)√
m2 − m2

0

= − 1

2π
P

∫ m2
max

m2
0

log
[

1
p′C2(p′)

d2σ
dm′2dt

]
√

m′2 − m2
0(m′2 − m2)

×
√

m2
max − m2

m2
max − m′2 dm′2. (21)

Using the effective-range expansion (16) one can then extract
the scattering length acs from this dispersion integral.

V. TEST OF THE METHOD FOR THE COULOMB CASE

One of the obvious reactions for applying the formalism
including the Coulomb force is pp → K0�+p, where one
could determine the �N scattering length for the isospin
3/2 state. Note that the �+p channel does not couple
to the �N system and is therefore free of inelastic cuts
(which start already on the left-hand side) as required for
the applicability of the disperson-integral method. For this
reaction one could perform a model calculation analogous
to the one for pp → K+�p [47], that we used for testing
the dispersion-integral method in the absence of the Coulomb
interaction [21]. However, implementing Coulomb effects into
our momentum-space code is technically complicated and
requires some approximations [59]. Thus, for the present test
calculation we adopt a different strategy. First, instead of the
momentum-space YN models of Refs. [43,45,46] we take the
r-space Argonne (NN) potential, however, with parameters
modified in such a way that the effective-range parameters
are similar to those predicted by realistic YN potentials
[43–46] for the �N I = 3/2 1S0 partial wave. In particular,
we prepared two models with Coulomb-modified scattering
lengths of acs = −3.24 fm (model 1) and acs = −1.86 fm
(model 2), respectively. The corresponding scattering lengths
without the Coulomb interaction are −4.11 and −2.01 fm,
respectively. For the transition amplitude we use the scattering
wave function calculated from those potential models and
evaluated at the origin. This corresponds to the assumption
that the production operator is pointlike, which is reasonable
as long as we are interested only in the mass dependence of
the production amplitude. The corrections stemming from a
possible mass dependence of the production operator were
discussed in Ref. [21].

The results of applying Eq. (7) with mmax − m0 =
40 MeV (pmax = 205 MeV/c) are shown in Fig. 3, where
we plot the function 1/S(p), which should coincide with

0 50 100 150 200
p [MeV/c]

0

1

2

3

4

1/
S(

p)
 [

fm
]

FIG. 3. The inverse of the effective range function S(p) for
model 1 (upper curves) and model 2 (lower curves). The solid
lines denote the phase shifts predicted by the corresponding model,
whereas the dashed lines correspond to the phase shift extracted via
Eq. (21). The dash-dotted lines show the result of the smooth
extrapolation of the dashed lines, as explained in the text.
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the scattering length −acs at p = 0. Obviously, there is
a strongly nonanalytic behavior of the extracted inverse
effective-range function when approaching the threshold; this
behavior, however, can be easily understood. It is clear from
Eq. (16) that the threshold behavior of the Coulomb-modified
phase shift is δcs ≈ −acs p C2(p); that is, δcs goes to zero very
rapidly. To obtain such a behavior on the left-hand side of
Eq. (21) one needs to have a very precise cancellation in the
integral on the right-hand side of Eq. (21), which is, of course,
impossible if one truncates the integral at a finite momentum.
But still one can expect Eq. (21) to work for momenta not too
close to the threshold, namely above the typical Coulomb scale
of 2πα/µ ≈ 25 MeV/c, where the factors C2(p) and Q(p)
that appear in the effective-range function [Eq. (16)] become
smoother. This is indeed the case, as can be seen from Fig. 3.
Thus, a natural and practical step here would be to extrapolate
the extracted S(p) to the threshold from above. Using a fourth-
order polynomial of the type −1/acs + rep

2/2 − Pr3
e p4 and

fixing the coefficients in the region 50−100 MeV/c (i.e., well
above the Coulomb structure), one can then extrapolate S(p)
to the threshold (cf. the dash-dotted lines in Fig. 3). In this
case one gets a satisfactory agreement between the true and
extracted scattering lengths. In fact, the deviations are not
worse than in the case when we consider the same potentials
without a Coulomb interaction and they are also within the
theoretical error of 0.3 fm estimated in Ref. [21]. The extracted
values are acs = −3.10 and −1.86 fm for models 1 and 2,
respectively, with a Coulomb interaction and as = − 4.05 and
−2.06 fm when the Coulomb interaction is switched off. We
also checked that the sensitivity of the result to the region
of interpolation of the effecitve-range function S(p) is rather
low. For instance, if one shifts the lower bound of this region to
70 MeV/c the corresponding change in the scattering length
will be less then 0.05 fm.

If one wishes to consider a more realistic situation, one
needs to deal with mass distributions with finite statistical
errors, finite mass resolution, and finite binning. To examine
this situation we have generated two data sets, corresponding
to models 1 and 2 as shown in Fig. 4. We have chosen the
binning as well as the mass resolution to be equal to 2 MeV
(the same as in the experiment [51] that was analyzed in Ref.
[21]) and have selected statistics to be rather high to minimize
the influence of the statistical error bars on the results. The
excess energy was set to 40 MeV to simplify the simulation.
In a realistic situation larger values are preferable to minimize
the influence of the meson-baryon interactions (cf. see the
corresponding remarks in Ref. [21]). In our test calculation
such meson-baryon interactions are neglected anyway.

We start here with the procedure suggested in appendix
A of Ref. [21], namely by fitting the cross section with an
exponential parametrization of the type

d2σ

dm2dt
= C2(p) × exp

[
C0 + C2

1(
m2 − C2

2

)
]

× phase space.

(22)

This formula fits the generated cross section with the χ2 per
degree of freedom of χ2

dof ∼ 1 (cf. Fig. 4). A new problem that
arises here is that the production amplitude contains a very
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FIG. 4. Pseudo data for the differential �+p cross section gen-
erated from model 1 (circles) and model 2 (squares) as a function of
the �p invariant mass M�p with corresponding fit by the exponential
parametrization, Eq. (22).

narrow structure (of the size 2πα/µ) close to threshold, as can
be seen in Fig. 5 (solid lines). Clearly, this structure cannot
be reproduced after the fitting procedure as it gets smeared
out by the mass resolution and binning (their size being much
larger than the scale of the structure). The amplitudes coming
from the fit are depicted in Fig. 5 by dash-dotted lines.
However, the fit can be improved if one notes that the structure
comes mostly from the part of the dispersion integral (20)
containing the leading term in the δcs expansion near the
threshold, namely (in the nonrelativistic case)

exp

[
1

π

∫ ∞

0

−acsC
2(p′)

p′2 − p2 − i0

(
p2

p′2

)
dp′2

]
= exp [−acsQ(p)],

(23)

where we made a subtraction at p = 0 to render the integral
convergent. This does not change the energy dependence of the
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p [MeV/c]
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FIG. 5. The production amplitude A(m2) divided by the factor
C(p) for model 1 (upper curves) and model 2 (lower curves). The
solid lines are the amplitudes as calculated from the models. The
dash-dotted lines correspond to the fitted amplitudes. The dashed
lines denote the fitted amplitudes improved by the iterative procedure
as discussed in the text.
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FIG. 6. The inverse of the effective range function S(p) calculated
by means of the iterative procedure as discussed in the text. The dotted
line corresponds to the zeroth iteration, the dashed line corresponds to
the first iteration, and the dash-dotted line corresponds to the second
iteration. The solid curve denotes the exact result. Shown are results
for model 1.

resulting exponent. Indeed, the structure disappears after di-
viding the production amplitude by the factor exp[−acsQ(p)].

Obviously the scattering length is unknown before its
extraction! But one can resort to an iterative procedure by first
including the extraction of the unimproved scattering length,
then putting it into the fit function,

d2σ

dm2dt
= C2(p) × exp

[
C0 + C2

1(
m2 − C2

2

)
− 2acsQ(p)

]
× phase space, (24)

and by repeating this step until the procedure converges.
Fortunately, convergence is attained after only three or four
iterations, and the resulting amplitudes are shown in Fig. 5 by
the dashed lines. The improvement of the fit is quite obvious.
Finally, we applied the combination of the extrapolation and
iteration procedures to obtain the scattering lengths from the
pseudo data. Since the data have a statistical uncertainty we
generated a sample of 1000 mass distributions and looked at
the average value of the scattering lengths. They turned out to
be −2.89 ± 0.06 fm for model 1 and −1.82 ± 0.05 for model
2. Note that the deviation from the correct values is now a bit
larger but still reasonable (0.35 fm in the worst case). Figure
6 shows how the extracted inverse effective-range function
approaches the correct one given by the model by the example
of model 1.

VI. SUMMARY

In a recent publication [21] we have presented a formalism
based on dispersion relations that allows one to relate spectra
from large-momentum transfer reactions, such as pp →
K+p� or γ d → K+n�, directly to the scattering length
of the interaction of the final-state particles. An estimation
of the systematic uncertainties of that method, relying on
general arguments, led to the conclusion that the theoretical
error in the extracted scattering length should be less than
0.3 fm. This finding was corroborated in an application of

the method to results of a microscopic model calculation
for pp → K+p�.

In the present paper this dispersion theoretical method was
generalized to the case where a repulsive Coulomb force is
present in the final-state interaction. As an example let us
mention the reaction pp → K0p�+, which could be used to
extract the p�+ scattering length. Though the generalization
of the formalism itself is straightforward it turned out that
there are some additional features owing to the Coulomb
interaction that need to be taken into account in concrete
applications of the method to data. These practical aspects were
thoroughly discussed and it was shown how to circumvent
the difficulties. In a test calculation utilizing potential models
with effective-range parameters similar to those of realistic
YN interactions the extracted values for the scattering lengths
were found to agree within 0.3 fm with those predicted by
the models. Thus, the accuracy of the dispersion theoretical
method for extracting the scattering lengths from final-state
interactions including the Coulomb force is comparable to the
case where no Coulomb interaction is present.

We also presented a more detailed examination of the
accuracy of the dispersion-integral method than in Ref. [21].
In particular we considered final-state interactions of varying
strengths, corresponding to a much larger range of values of the
scattering length. These investigations confirmed the reliability
of the general error estimate provided in Ref. [21]. Indeed, in
most of the considered cases the deviation of the extracted
scattering length from the true value was significantly smaller
than the uncertainty of 0.3 fm derived in that paper. In addition,
we studied the effective range re, which can also be extracted
by the proposed dispersion-integral method. For most of the
interaction models considered the extracted values of re agreed
remarkably well with the true results. Thus, it might be
sensible to use the proposed method to extract the effective
range from data—though one should always keep in mind
that for this quantity a generally valid error estimation is not
possible [21].

Finally, we compared the present method with the perfor-
mance of other, approximative treatments of the final-state
interaction that are commonly used in the literature to extract
information on the scattering length and also the effective-
range. of particular we tested the Jost-function approach based
on the effective-range approximation (Jost-ERA) and an even
simpler approach that relies simply on utilizing the effective-
range approximation itself. Thereby, we showed that the latter
methods lead to systematic deviations from the true values
of the scattering lengths of the order of 0.3 fm (Jost-ERA)
and even 0.7 fm (direct effective-range approximation). This
suggests that one should be rather cautious in the interpretation
of results achieved with those methods.
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