570 research outputs found

    Hydrogenolysis of Glycerol over Îł-Al2O3-Supported Iridium Catalyst

    Get PDF
    In recent years, much attention has been focused on the hydrogenolysis of biodiesel derived glycerol to other high value products for the sustainable development and efficient valorization strategies. In the present work, alumina-supported Ir catalyst was prepared by the incipient wetness impregnation method and tested in the glycerol hydrogenolysis reaction. The synthesized catalyst was characterized by neutron activation analysis, N2 physisorption, and H2 chemisorption techniques. The experiments standard conditions were 150 mL feed volume, 0.3 g catalyst, 1500 rpm stirring speed, and 5 wt% glycerol aqueous solution for 4 h. The effects of catalyst amount, temperature, hydrogen pressure, stirring speed, and solution pH on glycerol conversion and selectivity of the principal products obtained were also investigated. The glycerol conversion and the 1,2-propanediol selectivity varied from 4.9% to 22% and from 23.8% to 70.3%, respectively. It was found that the selectivity of 1,2-propanediol increased significantly with the increased alkalinity of the reaction medium

    Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer's disease biomarkers

    Get PDF
    To develop therapies for Alzheimer's disease, we need accurate in vivo diagnostics. Multiple proteomic studies mapping biomarker candidates in cerebrospinal fluid (CSF) resulted in little overlap. To overcome this shortcoming, we apply the rarely used concept of proteomics meta-analysis to identify an effective biomarker panel. We combine ten independent datasets for biomarker identification: seven datasets from 150 patients/controls for discovery, one dataset with 20 patients/controls for down-selection, and two datasets with 494 patients/controls for validation. The discovery results in 21 biomarker candidates and down-selection in three, to be validated in the two additional large-scale proteomics datasets with 228 diseased and 266 control samples. This resulting 3-protein biomarker panel differentiates Alzheimer's disease (AD) from controls in the two validation cohorts with areas under the receiver operating characteristic curve (AUROCs) of 0.83 and 0.87, respectively. This study highlights the value of systematically re-analyzing previously published proteomics data and the need for more stringent data deposition

    Application of the ANOVA method in the optimization of a thermoelectric cooler-based dehumidification system

    Get PDF
    © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).In recent studies, Thermo-Electric Coolers (TEC) have been utilized for dehumidification purposes, which is mainly based on the extraction of moisture from humid atmospheric air. The reviewed literature showed that the rate of water collection from the TEC-based system can be affected by various parameters such as the module’s input voltage, the heat sink orientation, and tilt angles. In this research, the analysis of variance (ANOVA) was used to examine the significance of these factors and their interaction within the system on the TEC-based dehumidification system. Four levels were investigated for both, the Peltier’s input voltage and the rotation angle, and three levels for the tilt angle. This study indicated the significance of the studied factors and their interactions within the dehumidification system along with performing an overall numerical optimization. The experiments were conducted under the same working conditions in an enclosed environment to minimize errors. According to the overall numerical optimization, which was validated experimentally, the optimum system performance was predicted to be obtained at approximately 6.8V Peltier input volt, 65° rotation angle, and 90° tilt angles, with predicted optimum productivities of 0.32278 L/kWh and 13.03 mL/hr. For the same set of parameters, the variation between the experiment and the numerical optimization was less than 4%. The experiments show that when optimizing water collection rates for thermoelectric cooling heat sinks​ under high humidity conditions, the orientation of the heat sink should be considered.Peer reviewe

    Thermohydraulic analysis of covalent and noncovalent functionalized graphene nanoplatelets in circular tube fitted with turbulators

    Get PDF
    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Covalent and non-covalent nanofluids were tested inside a circular tube fitted with twisted tape inserts with 45° and 90° helix angles. Reynolds number was 7000 ≀ Re ≀ 17,000, and thermophysical properties were assessed at 308 K. The physical model was solved numerically via a two-equation eddy-viscosity model (SST k-omega turbulence). GNPs-SDBS@DW and GNPs-COOH@DW nanofluids with concentrations (0.025 wt.%, 0.05 wt.% and 0.1 wt.%) were considered in this study. The twisted pipes' walls were heated under a constant temperature of 330 K. The current study considered six parameters: outlet temperature, heat transfer coefficient, average Nusselt number, friction factor, pressure loss, and performance evaluation criterion. In both cases (45° and 90° helix angles), GNPs-SDBS@DW nanofluids presented higher thermohydraulic performance than GNPs-COOH@DW and increased by increasing the mass fractions such as 1.17 for 0.025 wt.%, 1.19 for 0.05 wt.% and 1.26 for 0.1 wt.%. Meanwhile, in both cases (45° and 90° helix angles), the value of thermohydraulic performance using GNPs-COOH@DW was 1.02 for 0.025 wt.%, 1.05 for 0.05 wt.% and 1.02 for 0.1 wt.%.Peer reviewe

    Effect of BN dimers on the stability, electronic, and thermal properties of monolayer graphene

    Get PDF
    Publisher's version (Ăștgefin grein)We theoretically investigate structural stability, electronic and thermal characteristic of boron and nitrogen codoped monolayer graphene using density functional theory and Boltzmann transport equation. Three types of BN dimers, ortho, meta, and para dimers, are identified at different concentration ratios of B and N atoms. Our DFT calculations suggest that the BN ortho dimers are structurally favorable configurations due to the lowest required formation energy. At low doping ratio, large bandgap for BN para dimer is predicted leading to high Seebeck coefficient and figure of merit. In addition, a large deviation in the Wiedemann–Franz ratio is also seen, and a maximum value of the Lorenz number is thus found. In contrast, at high doping ratio, high Seebeck coefficient and figure of merit are found for BN ortho dimer and a low Seebeck coefficient for BN para dimer is noticed. Furthermore, a small deviation in Lorenz number is found for high doping ratio where the distance between BN pair is large.This work was financially supported by the University of Sulaimani and the Research center of Komar University of Science and Technology. The computations were performed on resources provided by the Division of Computational Nanoscience at the University of Sulaimani.Peer Reviewe

    Next-generation ion torrent sequencing of drug resistance mutations in Mycobacterium tuberculosis strains

    Get PDF
    A novel protocol for full-length Mycobacterium tuberculosis gene analysis of first- and second-line drug resistance was developed using the Ion Torrent Personal Genome Machine (PGM). Five genes—rpoB (rifampin), katG (isoniazid), pncA (pyrazinamide), gyrA (ofloxacin/fluoroquinolone), and rrs (aminoglycosides)—were amplified and sequenced, and results were compared to those obtained by genotypic Hain line probe assay (LPA) and phenotypic Bactec MGIT 960 analysis using 26 geographically diverse South African clinical isolates collected between July and November 2011. Ion Torrent sequencing exhibited 100% (26/26) concordance to phenotypic resistance obtained by MGIT 960 culture and genotypic rpoB and katG results by LPA. In several rifampin- resistant isolates, Ion Torrent sequencing revealed uncommon substitutions (H526R and D516G) that did not have a defined mutation by LPA. Importantly, previously uncharacterized mutations in rpoB (V194I), rrs (G878A), and pncA (Q122Stop) genes were observed. Ion Torrent sequencing may facilitate tracking and monitoring geographically diverse multidrug- resistant and extensively drug-resistant strains and could potentially be integrated into selected regional and reference settings throughout Africa, India, and China.http://jcm.asm.org/am201
    • 

    corecore