
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17710  | https://doi.org/10.1038/s41598-022-22315-9

www.nature.com/scientificreports

Thermohydraulic analysis 
of covalent and noncovalent 
functionalized graphene 
nanoplatelets in circular tube fitted 
with turbulators
Hai Tao1,2,3, Omer A. Alawi4, Omar A. Hussein5, Waqar Ahmed6, Ali H. Abdelrazek6, 
Raad Z. Homod7, Mahmoud Eltaweel8, Mayadah W. Falah9, Nadhir Al‑Ansari10 & 
Zaher Mundher Yaseen11*

Covalent and non-covalent nanofluids were tested inside a circular tube fitted with twisted tape 
inserts with 45° and 90° helix angles. Reynolds number was 7000 ≤ Re ≤ 17,000, and thermophysical 
properties were assessed at 308 K. The physical model was solved numerically via a two-equation 
eddy-viscosity model (SST k-omega turbulence). GNPs-SDBS@DW and GNPs-COOH@DW nanofluids 
with concentrations (0.025 wt.%, 0.05 wt.% and 0.1 wt.%) were considered in this study. The twisted 
pipes’ walls were heated under a constant temperature of 330 K. The current study considered six 
parameters: outlet temperature, heat transfer coefficient, average Nusselt number, friction factor, 
pressure loss, and performance evaluation criterion. In both cases (45° and 90° helix angles), GNPs-
SDBS@DW nanofluids presented higher thermohydraulic performance than GNPs-COOH@DW 
and increased by increasing the mass fractions such as 1.17 for 0.025 wt.%, 1.19 for 0.05 wt.% and 
1.26 for 0.1 wt.%. Meanwhile, in both cases (45° and 90° helix angles), the value of thermohydraulic 
performance using GNPs-COOH@DW was 1.02 for 0.025 wt.%, 1.05 for 0.05 wt.% and 1.02 for 0.1 
wt.%.

List of symbols
Ag	� Silver
Al2O3	� Aluminum oxide
As	� Surface area of tube (m2)
CMC	� Carboxymethyl cellulose
COOH	� Carboxylic acid
Cp	� Specific heat capacity (J/kg·K)
Cu	� Copper
CuO	� Copper oxide
Dh	� Tube hydraulic diameter (mm)
DTTI	� Dimpled twisted turbulator insert
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DW	� Distilled water
f	� Friction factor
Fe	� Iron
FVM	� Finite volume method
GNPs	� Graphene nanoplatelets
GO	� Graphene oxide
Gr	� Graphene
H/D	� Twisted tape ratio
H2SO4	� Sulfuric acid
HNO3	� Nitric acid
htc	� Heat transfer coefficient (W/m2. K)
k	� Thermal conductivity (W/m·K)
keff	� Effective thermal conductivity (W/m K)
L	� Tube length (mm)
ṁ	� Mass flow rate (kg/s)
MgO	� Magnesium oxide
MWCNTs	� Multi-walled carbon nanotubes
Nuavg	� Average Nusselt number
PCM	� Phase change material
PEC	� Performance assessment criteria
Pr	� Prandtl number
Pt	� Platinum
Qgain	� Heat gain (W)
Re	� Reynolds number
SDBS	� Sodium dodecylbenzenesulfonate
SST	� Spiky twisted tapes
Tf	� Bulk temperature (K)
THNF	� Tripartite hybrid nanofluids
Tin	� Inlet fluid temperature (K)
TiO2	� Titanium dioxide
Tout	� Outlet fluid temperature (K)
Tw	� Wall surface temperature (K)
v	� Working fluid velocity (m/s)
VcTT	� V-cuts twisted tape
WC	� Wire coil
wt.%	� Weight concentration of nanoparticles
ΔP	� Pressure drop (Pa)
ϵ	� Energy dissipation rate (m2/s3)
μ	� Dynamic viscosity (Ns/m2)
ρ	� Density (kg/m3)

Study background knowledge and motivation.  Heat exchangers are thermal devices used to trans-
port heat during cooling and heating operations1. Heat exchanger thermohydraulic performance increases heat 
transfer coefficients and lowers working fluid resistance. Some heat transfer enhancement techniques have been 
developed, including turbulence promoters2–11 and nanofluids12–15. Due to its simplicity of maintenance and low 
cost, twisted tape insertion is one of the most successful ways of enhancing heat transfer in a heat exchanger7,16.

Implemented literature review on nanofluids‑based twisted pipes.  In a series of experimental 
and computational research, the hydrothermal characteristics of a mixture of nanofluids and a heat exchanger 
with twisted tape inserts were investigated. Experimental work explored the hydrothermal properties of three 
different metallic nanofluids (Ag@DW, Fe@DW, and Cu@DW) within a heat exchanger with spiky twisted tapes 
(STT)17. The heat transfer coefficient of STT has gone up 11 and 67% compared to the basic pipe. The SST 
arrangement was the best cost-efficient based on the performance factor, with the parameters of α = β = 0.33. 
Furthermore, n increase of 18.2% was observed using Ag@DW, even though the largest increase in pressure loss 
was just 8.5%. The heat transfer and pressure loss physical characteristics in a concentric tube with and with-
out wire coil (WC) turbulators were explored using turbulent forced convection Al2O3@DW nanofluid flow18. 
Maximum average Nusselt number (Nuavg) and pressure loss were seen under the Re = 20,000 when the pitch 
wire coil = 25 mm and 1.6 volume%-Al2O3@DW nanofluids. Laboratory studies were also carried out to inves-
tigate the heat transfer and pressure loss features of graphene oxide (GO@DW) nanofluids flowing through a 
basic circular tube with WC inserts19. According to the results, 0.12 volume%-GO@DW raised the convective 
heat transfer coefficient by about 77%. An additional experimental study developed (TiO2@DW) nanofluid, 
examining thermo-hydraulic performances of dimpled tubes fitted having twisted tape inserts20. The greatest 
thermo-hydraulic efficiency of 1.258 was achieved using 0.15 volume%-TiO2@DW in a tilted 45°-dimple and 
embedded with a twisted tape ratio of 3.0. Single-phase and two-phase (mixed) simulation models solved the 
CuO@DW nanofluid flow and heat transfer in the various solid concentrations (1–4% volume%)21. The maxi-
mum thermal efficiency in a tube with one twisted tape insertion was 2.18, but it was 2.04 in a tube with two 
twisted tape insertions on the same terms (two-phase model, Re = 36,000 and 4 volume%). The non-Newtonian 
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turbulent nanofluid flow of Carboxymethyl cellulose (CMC) and Copper oxide (CuO) was examined in a basic 
pipe and a pipe having twisted insertions22. Nuavg demonstrated improvements like 16.1% (for basic pipe) and 
60% [for a twisted pipe with a ratio of (H/D = 5)]. Frequently, the smaller twisted tape ratio has established a 
higher friction factor. An experimental study examined the influences of pipe having twisted tape (TT) and wire 
coil (WC) on the heat transfer and friction factor properties using CuO@DW nanofluid23. Using 0.3volume%-
CuO@DW at Re = 20,000 enhanced the heat transfer up to its maximum value of 44.45% in a WC-2 tube. Fur-
thermore, by applying twisted tape and wire coil insertions under the same boundary conditions, the friction 
factors increased by 1.17-times and 1.19-times compared to DW. In general, the thermal performance factor 
of nanofluids with wire coil insertions was better than for twisted tape insertions. The overall performance of 
turbulent (MWCNTs@DW) nanofluid flow was examined inside a horizontal pipe with coiled wire inserted24. 
All cases had a thermal performance parameter > 1, indicating that combining nanofluids with wire coil inser-
tions improved heat transfer without consuming pumping power. Experiments under turbulent Al2O3 + TiO2@
DW nanofluid flow conditions were carried out on hydrothermal properties in a double-tube heat exchanger 
having various modified V-cuts twisted tape (VcTT) insertions25. Nuavg was enhanced significantly by the per-
centage of 132%, and the friction factor was up to 55% when compared to DW in a basic pipe. Also, the exergetic 
effectiveness of nanocomposite Al2O3 + TiO2@DW was discussed within a double pipe heat exchanger26. They 
found in their research that employing Al2O3 + TiO2@DW and TT increased the exergy efficiency relative to DW. 
In a concentric tube heat exchanger having a VcTT turbulator, Singh and Sarkar27 used phase change material 
(PCM) dispersed mono/nanocomposite nanofluids (Al2O3@DW with PCM and Al2O3 + PCM). They reported 
that heat transfer and pressure loss increased when the twisting ratio decreased and nanoparticle concentra-
tion increased. More heat transfer and pressure loss were achieved with a larger V-cut depth ratio or a lower 
width ratio. Furthermore, graphene–platinum (Gr-Pt) was applied to examine the thermal, frictional, and total 
entropy production rates in tubes having 2-TT insertions28. Their study noted that less percentage of (Gr-Pt) 
significantly decreased the thermal entropy formation than relatively increased frictional entropy development. 
Al2O3@MgO hybrid nanofluid and tapered WC can be regarded as a good mix because of the enhanced (h/Δp) 
ratio to improve the hydrothermal properties of a double pipe heat exchanger29. A numerical model was used 
to solve the exergo-economic environmental effectiveness of heat exchanger having various tripartite hybrid 
nanofluids (THNF) (Al2O3 + Graphene + MWCNTs) suspended in DW30. The combination of dimpled twisted 
turbulator insert (DTTI) and (Al2O3 + Graphene + MWCNTs) was desired because its performance assessment 
criteria (PEC) was in the range of 1.42–2.35.

Research objectives.  So far, very little attention has been paid to the role of covalent and non-covalent 
functionalization on hydraulic flow in thermal fluids. The specific objective of this study was to compare the ther-
mal–hydraulic performance of (GNPs-SDBS@DW) and (GNPs-COOH@DW) nanofluids within twisted tape 
inserts with 45-degree and 90-degree helix angles. The thermophysical properties were measured at Tin = 308 K. 
Meanwhile, three mass fractions were taken into consideration during the comparison such as (0.025 wt.%, 0.05 
wt.% and 0.1 wt.%). The shear stress transport (SST k-ω) model in three-dimensional turbulence was used to 
solve the thermohydraulic performance. As a result, by proving Thermal–Hydraulic Performance and Optimi-
zation the practical working fluids in such engineering systems, this study offers a significant contribution to 
research on the positive properties (heat transfer) and negative properties (frictional pressure drop).

Numerical methodologies
Physical model and numerical method.  The base configuration is a smooth pipe (L = 900  mm and 
Dh = 20 mm). The twisted tapes were inserted with the dimensions of (length = 20 mm, thickness = 0.5 mm, and 
profile = 30 mm). Meanwhile, the helical profile length, width, and path were 20 mm, 0.5 mm, and 30 mm. The 
twisted tape was tilted at an angle of 45° and 90°. Different working fluids such as DW, non-covalent nanofluids 
(GNPs-SDBS@DW), and covalent nanofluids (GNPs-COOH@DW) were tested inside the heat exchangers at 
Tin = 308 K, three different mass concentrations, and different Reynolds numbers. The outer walls of the spiral 
pipes were heated at a constant surface temperature of 330 K to examine the heat transfer enhancement param-
eters.

Figure 1 illustrates a schematic design of the twisted tape insertion pipe with the applicable boundary condi-
tions and grid domains. As noted, velocity and pressure boundary conditions are applied at the inlet and exit parts 
of the spiral pipes. The non-slip condition is applied to the pipe wall under the constant surface temperature. The 
pressure-based solution was used in the current numerical simulations. Meanwhile, (ANSYS FLUENT 2020R1) 
program was used to convert the partial differential equations (PDEs) into a system of algebraic equations 
using the finite volume method (FVM). The second-order SIMPLE (Semi-Implicit Method for Pressure Linked 
Equations-Consistent) methodology correlates the velocity–pressure. It should be emphasized that convergence 
for the residual of mass, momentum, and energy equations is less than 103 and 106, respectively.

Assumptions and mathematical formulas.  The homogeneous model is used to explain the nature of 
nanofluids. A continuous fluid with excellent thermophysical properties is formed by adding nanomaterials to 
the base fluid (DW). In this regard, the temperature and velocity of the base fluid and nanomaterials have the 
same values. The effective single-phase flow works due to the abovementioned theories and hypotheses in this 
research. Several examinations have confirmed the single-phase technique’s validity and applicability for nano-
fluid flow31,32.
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The flow of nanofluids is supposed to be Newtonian turbulent, incompressible, and steady-state. Compression 
work and viscous heating are not significant in this investigation. Also, the thicknesses of the inner and outer 
pipe walls are not considered. Therefore, the mass, momentum, and energy conservation governing equations 
of the thermal model may be stated as follows33:

Figure 1.   Schematic diagram of p physical and computational domain; (a) 90° helix angle, (b) 45° helix angle, 
(c) no helix blades.
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Governing equation for mass

Governing equation for momentum

Governing equation for energy transport

where 
−→
V  is the mean velocity vector, Keff = K + Kt is the effective thermal conductivity of covalent and non-cova-

lent nanofluids, and ϵ is the energy dissipation rate. The effective thermo-physical properties of the nanofluid, 
including density (ρ), viscosity (μ), specific heat capacity (Cp), and thermal conductivity (k) as measured in 
experimental study34 for a temperature of 308 K, as listed in Table 1 were used in these simulations.

The turbulent nanofluid flow in plain and TT pipes was numerically simulated at the Reynolds numbers 
condition of 7000 ≤ Re ≤ 17,000. These simulation cases and the convective heat transfer coefficient were analyzed 
by applying the Mentor Shear Stress Transport (SST) κ-ω turbulence model, a two-equation Reynolds-averaged 
Navier–Stokes turbulence model that is commonly used for aerodynamic research. Moreover, this model oper-
ates with no wall functions and is accurate near-wall35,36. The (SST) κ-ω turbulence model governing equations 
are as follows:

Kinematic Eddy viscosity

Turbulence kinetic energy

Specific dissipation rate

Closure coefficients and auxiliary relations
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Table 1.   Thermal-physical properties of DW, (SDBS-GNPs@DW) and (COOH-GNPs@DW) nanofluids34.

Thermophysical properties DW

SDBS-GNPs@DW COOH-GNPs@DW

0.025 wt.% 0.05 wt.% 0.1 wt.% 0.025 wt.% 0.05 wt.% 0.1 wt.%

ρ (kg/m3) 994.1 995.1151 996.8895 998.158 994.9564 995.9241 996.8885

cp (J/kg·K) 4178 4152.66 4104.075 4055.95 4164.51 4111.11 4056.685

k (W/m·K) 0.623 0.645 0.675 0.695 0.685 0.71 0.754

μ (Ns/m2) 0.0007 0.001 0.0011 0.0013 0.0008 0.0009 0.0009
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where S is the strain rate magnitude and y is the distance to the next surface. Meanwhile, α1 , α2 , β1 , β2 , β∗ , σk1 , 
σk2 , σω1

 and σω2
 represent all model constants. F1 and F2 refer to the blending functions. Note: F1 = 1 inside the 

boundary layer and 0 in the free stream.
Performance evaluation parameters are used to examine turbulent convective heat transfer, covalent and 

non-covalent nanofluid flow, such as31:
Reynolds number

Prandtl number

Heat gain (W)

Heat transfer coefficient (W/m2. K)

Average Nusselt number

Friction factor

Pressure loss

Dittus–Boelter equation

Petukhov equations

Gnielinski equation
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k
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Notter-Rouse equation

Blasius equation

Thermohydraulic performance

In this regard, ( ρ ), ( v ), ( Dh ) and ( µ ) are used for the density, working fluid velocity, hydraulic diameter, 
and dynamic viscosity. ( Cp and k ) are the specific heat capacity and thermal conductivity of the flowing fluid. 
Also, ( ṁ ) refer to the mass flow rate and ( Tout − Tin ) symbolizes the outlet/inlet temperature difference. (NFs) 
refer to the covalent, non-covalent nanofluids, and (DW) refer to the distilled water (base fluid). As = πDL , 
Tf = (Tout−Tin)

2
 and Tw =

∑ Tw
n .

Thermal‑physical properties of covalent and non‑covalent nanofluids
The thermal-physical properties of base fluid (DW), non-covalent nanofluids (GNPs-SDBS@DW), and cova-
lent nanofluids (GNPs-COOH@DW) were collected from the published literature (experimental study) under 
Tin = 308 K, as shown in Table 134. In a typical experiment, to produce a non-covalent (GNP-SDBS@DW) nano-
fluid with known mass percentages, a certain gram of pristine GNPs was initially weighted via digital balance. A 
weight ratio SDBS/pristine GNPs of (0.5:1) suspended in DW. Meanwhile, the covalent (COOH-GNPs@DW) 
nanofluids were synthesized using a strong acid medium of HNO3 and H2SO4 in the volume ratio of (1:3) to add 
carboxyl groups at the surface of GNPs. The covalent and non-covalent nanofluids were suspended in DW with 
three different mass percentages, such as 0.025 wt.%, 0.05 wt.% and 0.1 wt.%.

Results and discussion
Verification of the numerical outputs.  Grid independence tests were run on four different computa-
tional domains to ensure grid size did not affect the simulations. In the case of 45° twisted pipe, the number of 
elements was 249,033 for element size of 1.75 mm, 307,969 for element size of 2 mm, 421,406 for element size of 
2.25 mm, and 564,940 for element size of 2.5 mm, respectively. Moreover, the number of elements in the instance 
of a 90° twisted pipe was 245,531 for element size of 1.75 mm, 311,584 for element size of 2 mm, 422,708 for 
element size of 2.25 mm, and 573,826 for element size of 2.5 mm, respectively. The accuracy of thermal prop-
erties such as (Tout, htc, and Nuavg) readings increased by decreasing the number of elements. Meanwhile, the 
accuracy of friction factor and pressure drop values showed a completely different behavior (Fig. 2). Grid (2) was 
employed as the main mesh domain to evaluate thermohydraulic performance in the simulation cases.

The current numerical results were verified using well-known empirical correlations and equations such as 
Dittus–Boelter, Petukhov, Gnielinski, Notter-Rouse, and Blasius for heat transfer and friction factor properties. 
The comparison was under the condition of 7000 ≤ Re ≤ 17,000. As per Fig. 3, the average and maximum errors 
between the simulation results and heat transfer equations were 4.050% and 5.490% (Dittus–Boelter), 9.736% 
and 11.33% (Petukhov), 4.007% and 7.483% (Gnielinski), and 3.883% and 4.937% (Notter-Rouse). Meanwhile, 
the average and maximum errors between the simulation results and friction factor equations were 7.346% and 
8.039% (Blasius) and 8.117% and 9.002% (Petukhov).

Thermohydraulic enhancement of nanofluids/basefluids.  This section discusses the thermohy-
draulic properties of non-covalent (GNPs-SDBS) and covalent (GNPs-COOH) based water nanofluids at three 
various mass fractions and Reynolds number as an average with respect to base fluid (DW). Two geometries 
twisted taped heat exchangers with (45° and 90° helix angles) were discussed in 7000 ≤ Re ≤ 17,000. Figure 4 
shows the average outlet temperature of nanofluids to base fluid (DW) ( ToutNFsToutDW

 ) at (0.025 wt.%, 0.05 wt.% and 

0.1 wt.%). ( ToutNFsToutDW
 ) is always less than 1, meaning that the outlet temperature of non-covalent (GNPs-SDBS) and 

covalent (GNPs-COOH) nanofluids was less than the outlet temperature for base fluid. The lowest and highest 
decrease was achieved by 0.1 wt.%-COOH@GNPs and 0.1 wt.%-SDBS@GNPs, respectively. This phenomenon 
is caused by an increase in the Reynolds number at the constant weight fraction, which causes a change in nano-
fluid characteristics (i.e., density and dynamic viscosity).

Figures 5 and 6 depict the average heat transfer properties of nanofluids to base fluid (DW) at (0.025 wt.%, 
0.05 wt.% and 0.1 wt.%). The average heat transfer properties are always greater than one, meaning that the 
heat transfer properties of non-covalent (GNPs-SDBS) and covalent (GNPs-COOH) nanofluids were enhanced 
relative to the base fluid. The lowest and highest enhancement was achieved by 0.1 wt.%-COOH@GNPs and 
0.1 wt.%-SDBS@GNPs, respectively. Heat transport properties improved when the Reynolds number increased 
due to greater fluid mixing and turbulence in tube1. The liquid running through the small gaps gets a higher 
velocity, causing velocity/thermal boundary layers to thin, thus, enhancing the heat transfer rate. Adding more 
nanoparticle percentages to the base fluid exhibits positive and negative outcomes. The favorable influences 
include increased nanoparticle collision, fluid thermal conductivity, and beneficial requirements for heat transfer 
augmentation.

(23)Nuavg = 5+ 0.015×Re0.856 × Pr0.347

(24)f =
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(25)PEC =
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/

(
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fDW

)1/3

=
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/
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pipes for DW.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17710  | https://doi.org/10.1038/s41598-022-22315-9

www.nature.com/scientificreports/

Meanwhile, the negative impact is the increased dynamic viscosity of nanofluid, which decreases the move-
ment of nanofluid and, therefore, the average Nusselt number (Nuavg). The increased thermal conductivity of 
the (GNPs-SDBS@DW) and (GNPs-COOH@DW) nanofluids is supposed to be due to Brownian motion and 
micro-convection of graphene nanoparticles suspended in DW37. (GNPs-COOH@DW) nanofluids had a higher 
thermal conductivity than (GNPs-SDBS@DW) nanofluids and distilled water. Adding more nanomaterial per-
centages to the base fluid increased their thermal conductivity (Table 1)38.

Figure 7 explains the average friction factor of nanofluids to base fluid (DW) (f(NFs)/f(DW)) at the mass percent-
ages of (0.025%, 0.05% and 0.1%). The average friction factor is always ≈ 1, implying that the friction factor of 
non-covalent (GNPs-SDBS@DW) and covalent (GNPs-COOH@DW) nanofluids was the same with base fluid. 
The heat exchangers with less space created more flow obstruction and increased flow friction1. Mainly, the fric-
tion factor increased marginally along with increasing nanofluid mass percentages. The higher friction loss was 
caused by increased nanofluid dynamic viscosity and shear stresses on surfaces with higher nano-graphene mass 
percentages in the base fluid. According to Table (1), the dynamic viscosity of the (GNPs-SDBS@DW) nanofluid 
was higher than that of the (GNPs-COOH@DW) nanofluid at equal weight percentages, because of the impact 
of adding surfactant during the production of non-covalent nanofluids.

Figure 8 shows the average pressure loss of nanofluids to base fluid (DW) ( �PNFs
�PDW

 ) at the mass percentages of 
(0.025%, 0.05% and 0.1%). Non-covalent (GNPs-SDBS@DW) nanofluids demonstrate higher average pressure 
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loss and increase by increasing the weight percentage to 2.04% for 0.025 wt.%, 2.46% for 0.05 wt.%, and 3.44% 
for 0.1 wt.% in both cases (45° and 90° helix angles). Meanwhile, (GNPs-COOH@DW) nanofluids exhibited 
lower average pressure loss, increasing from 1.31% for 0.025 wt.% to 1.65% for 0.05 wt.%. The average pressure 
loss for 0.05 wt.%-COOH@GNPs and 0.1 wt.%-COOH@GNPs is 1.65%. As shown, the pressure drop increased 
in all cases by the Re number increment. The increased pressure drop in high Re values could be justified by the 
direct relation with the volume flow rate. Therefore, higher Re numbers in tubes bring about a higher pressure 
drop, which calls for the increased pumping power39,40. Moreover, higher pressure loss because of higher swirl 
and turbulence intensities produced by the larger surface area increased the interaction of pressure forces with 
inertial forces in the boundary layer1.

Overall, the performance evaluation criterion (PEC) of non-covalent (GNPs-SDBS@DW) and covalent 
(GNPs-COOH@DW) nanofluids is shown in Fig. 9. (GNPs-SDBS@DW) nanofluids present higher PEC values 
than (GNPs-COOH@DW) in both cases (45° and 90° helix angles) and are raised by increasing the mass frac-
tions such as 1.17 for 0.025 wt.%, 1.19 for 0.05 wt.% and 1.26 for 0.1 wt.%. Meanwhile, the value of PEC using 
(GNPs-COOH@DW) nanofluids is 1.02 for 0.025 wt.%, 1.05 for 0.05 wt.% and 1.02 for 0.1 wt.% in both cases 
(45° and 90° helix angles). Generally, as the Reynolds number increased, the thermohydraulic performance factor 
decreased considerably. The drop in thermohydraulic performance factor systematically is credited to the rise of 
(NuNFs/NuDW) and the decrease of (fNFs/fDW) as the Reynolds number increases1.

Thermohydraulic enhancement of twisted pipe/plain pipe.  This section discusses the thermohy-
draulic properties of water (DW), non-covalent (GNPs-SDBS@DW), and covalent (GNPs-COOH@DW) nano-
fluids at three different weight concentrations and Reynolds numbers. Two twisted taped heat exchanger geom-
etries were considered with (45° and 90° helix angles) in the range of 7000 ≤ Re ≤ 17,000 relatives to plain pipe to 
evaluate the average values of thermohydraulic properties. Figure 10 shows the outlet temperature of water and 
nanofluids as an average value using (45° and 90° helix angles) to the plain pipe ( ToutTwistedTout Plain

 ). The non-covalent 
(GNPs-SDBS@DW) and covalent (GNPs-COOH@DW) nanofluids were in three different mass fractions, such 
as 0.025 wt.%, 0.05 wt.% and 0.1 wt.%. As illustrated in Fig. 11, the average outlet temperature values ( ToutTwistedTout Plain

 ) 
are > 1, indicating that the outlet temperature of (45° and 90° helix angles) heat exchangers was more significant 
than the value of outlet temperature for the plain pipe due to a more vigorous turbulence intensity and better 
fluid mixing. Furthermore, as the Reynolds number rises, the outlet temperature of DW, non-covalent, and 
covalent nanofluids declines. Based fluid (DW) has the highest average output temperature values. Meanwhile, 
the lowest value is dedicated for 0.1 wt.%-SDBS@GNPs. The non-covalent (GNPs-SDBS@DW) nanofluids show 
lower average outlet temperature relative to covalent (GNPs-COOH@DW) nanofluids. As the flow field is mixed 
up more as a result of the twisted tape, the wall heat flux can more easily pass through the fluid flow, raising the 
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bulk temperature. Smaller twisted tape ratio values result in better penetration, which improves heat transmis-
sion. The twisted tape, on the other hand, is seen to maintain a lower temperature near the wall, which in turn 
raises Nuavg. With twisted tape inserts, a higher Nuavg indicates improved convective heat transmission across 
tube22. Increased residence time due to raised flow path with extra mixing and turbulence creation, they are 
resulting in a rise in the fluid’s outlet temperature41.

The primary mechanisms of heat transfer enhancement owing to twisted tape are as follows: 1. The lowering 
of a heat transfer tube’s hydraulic diameter generates an increase in flow velocity and curvature, which in turn 
increases shear stress near the wall and promotes secondary motion. 2. The velocity increases near the tube wall 
due to the blocked twisted tape, reducing the thickness of the boundary layer. 3. The helical flow following the 
twisted tape causes an increase in velocity. 4. Induced whirling flow improves fluid mixing between the core and 
near-wall flow areas42. Figures 11 and 12 showed the heat transfer properties such as (heat transfer coefficient 
and average Nusselt number) of DW and nanofluids as an average value using twisted tape inserts pipes relative 
to the plain pipe. The non-covalent (GNPs-SDBS@DW) and covalent (GNPs-COOH@DW) nanofluids were 
in three different mass fractions, such as 0.025 wt.%, 0.05 wt.% and 0.1 wt.%. In both heat exchangers (45° and 
90° helix angles), the average values of heat transfer properties are > 1, which indicates improvement of heat 
transfer coefficient and average Nusselt number using twisted pipes relative to plain pipe. The non-covalent 
(GNPs-SDBS@DW) nanofluids show higher average heat transfer enhancement than covalent (GNPs-COOH@
DW) nanofluids. The highest augmentation in the heat transfer properties was reached by 0.1 wt.%-SDBS@
GNPs with the value of 1.90 in both heat exchangers (45° and 90° helix angles) at Re = 900. This means that the 
role of uniform TT in increasing turbulence intensity is far more major at the lower fluid velocities (Reynolds 
numbers)43. The heat transfer coefficient and average Nusselt number in TT pipes are higher than in a plain pipe 
due to the induction of multiple swirl flows, resulting in thinner boundary layer. Comparison to the basic pipe 
(no twisted tape insertions), whether the existence of TT produces increased turbulence intensity, flow mixing 
of working fluids, and heat transfer enhancement21.

Figures 13 and 14 presented the average friction factor ( fTwistedfPlain
 ) and pressure loss ( �PTwisted

�PPlain
 ) of 45° and 90° 

heat exchangers relative to the plain pipe using DW, (GNPs-SDBS@DW) and (GNPs-COOH@DW) nanofluids 
with (0.025 wt.%, 0.05 wt.%, and 0.1 wt.%). It can be observed from Figs. 13 and 14, as the Reynolds number 
increases in both heat exchangers (45° and 90° helix angles), the ratio of friction factor ( fTwistedfPlain

 ) and pressure 

loss ( �PTwisted
�PPlain

 ) decreases. For all scenarios evaluated, the friction factor and pressure loss values are superior at 
lower Reynolds numbers. The average friction factor and pressure loss are between 3.78 and 3.12. The average 
friction factor and pressure loss show that the value of (45° and 90° helix angles) heat exchangers has risen three 
times than the plain pipe. Furthermore, by flowing higher working fluid velocity, the friction factor decreases. 
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This problem is because, by raising the Reynolds number, the thickness of the boundary layer decreases, causing 
reducing in the influence of the affected area by dynamic viscosity and decreasing velocity gradient and shear 
stress, and, therefore, reducing the friction factor21. Improvement of the blocking effect because of the existence 
of TT and increased swirling flows produces a much higher-pressure loss for the non-uniform TT pipe than the 
basic ones. Additionally, for both the basic and TT pipes, it can be seen that the pressure drop is increasing by 
increasing the velocity of the working fluids43.

Generally, Fig. 15 illustrates the performance evaluation criterion (PEC) of 45° and 90° heat exchangers rela-
tive to the plain pipe ( PECTwisted

PECPlain
 ) using DW, (GNPs-SDBS@DW) and covalent (GNPs-COOH@DW) nanofluids 

in (0.025 wt.%, 0.05 wt.%, and 0.1 wt.%). The value for the ( PECTwisted
PECPlain

 ) is > 1 in both instances (45° and 90° helix 

angles) heat exchangers. Furthermore, the better value of ( PECTwisted
PECPlain

 ) is reached at Re = 11,000. The 90°-degree 
angle heat exchanger revealed a modest increase ( PECTwisted

PECPlain
 ) values in comparison to the 45°-degree angle heat 

exchanger. Furthermore, at Re = 11,000, 0.1 wt.%-GNPs@SDBS indicates a higher ( PECTwisted
PECPlain

 ) value, such as 1.25 
for 45°-degree angle heat exchanger and 1.27 for 90°-degree angle heat exchanger. It is larger than unity at all 
mass fraction percentages, pointing out that the pipe with twisted tape inserts outperforms the plain pipe. It is 
noted that heat transfer augmentation supplied by the tape inserts results in significantly increased friction loss22.

Velocity contours and streamlines.  Appendix A displays the velocity streamlines of 45° and 90° heat 
exchangers that use the DW, 0.1 wt.%-GNPs-SDBS@DW, and 0.1 wt.%-GNPs-COOH@DW at Re = 7000. The 
streamlines in the transverse planes are the most remarkable features of the impact of the twisted tape inserts 
on the mainstream flow. The applications of 45° and 90° heat exchangers illustrated about the same velocity in 
the near-wall regions. Meanwhile, Appendix B illustrates the velocity contours of 45° and 90° heat exchang-
ers using DW, 0.1 wt.%-GNPs-SDBS@DW, and 0.1 wt.%-GNPs-COOH@DW at Re = 7000. The velocity con-
tours were at three separate locations (slices) such as Plain-1 (P1 = −30 mm), Plain-4 (P4 = 60 mm) and Plain-7 
(P7 = 150 mm). The lowest velocity is near the pipe wall, and fluid velocity increases in the direction of the pipe 
center. Also, moving across the pipe increases the low-velocity zones next to the wall. This is because of the 
growth of hydrodynamic boundary layers, which increases the thickness of the low velocity zone next to the wall. 
Moreover, increasing the Reynolds number improves the total velocity level at all cross-sections, reducing the 
thickness of the low-velocity zones through pipe39.
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Conclusions
Covalent and non-covalent functionalized Graphene nanoplatelets were evaluated inside twisted tape inserts with 
45° and 90° helix angles. The heat exchangers were numerically solved via SST k-omega turbulence models in 
7000 ≤ Re ≤ 17,000. The thermophysical properties were calculated at Tin = 308 K. At the same time, the walls of 
the twisted pipe were heated under a constant temperature of 330 K. (GNPs-SDBS@DW) and (GNPs-COOH@
DW) nanofluids in three mass dilutions such as (0.025 wt.%, 0.05 wt.% and 0.1 wt.%). Current research consid-
ers six principal factors: outlet temperature, heat transfer coefficient, average Nusselt number, friction factor, 
pressure loss, and performance evaluation criterion. The following are the key findings:

	 i.	 The average outlet temperature ( ToutNanofluids/ToutBasefluid ) is always less than 1, meaning that the outlet 
temperature of non-covalent (GNPs-SDBS@DW) and covalent (GNPs-COOH@DW) nanofluids was less 
than of outlet temperature for base fluid. Meanwhile, the average outlet temperature ( ToutTwisted/ToutPlain ) 
values are > 1, indicating that the outlet temperature of (45° and 90° helix angles) was more substantial 
than the value of outlet temperature for the plain pipe.

	 ii.	 In both cases, the average (Nanofluids/Basefluids) and (Twisted pipe/Plain pipe) of heat transfer properties 
always show > 1. The non-covalent (GNPs-SDBS@DW) nanofluids showed higher average heat transfer 
augmentation corresponding to covalent (GNPs-COOH@DW) nanofluids.

	 iii.	 The average friction factor ( fNanofluids/fBasefluid ) of non-covalent (GNPs-SDBS@DW) and covalent (GNPs-
COOH@DW) nanofluids is always ≈ 1. Meanwhile, the average friction factor ( fTwisted/fPlain ) of non-
covalent (GNPs-SDBS@DW) and covalent (GNPs-COOH@DW) nanofluids is always > 3.

	 iv.	 In both cases (45° and 90° helix angles), (GNPs-SDBS@DW) nanofluids showed higher 
( �PNanofluids/�PBasefluid ) as 2.04% for 0.025 wt.%, 2.46% for 0.05 wt.% and 3.44% for 0.1 wt.%. In the 
meantime, (GNPs-COOH@DW) nanofluids showed lower ( �PNanofluids/�PBasefluid ) from 1.31% for 0.025 
wt.% to 1.65% for 0.05 wt.%. Furthermore, the average pressure loss ( �PTwisted/�PPlain ) of non-covalent 
(GNPs-SDBS@DW) and covalent (GNPs-COOH@DW) nanofluids is always > 3.

	 v.	 In both cases (45° and 90° helix angles), (GNPs-SDBS@DW) nanofluids presented higher 
( PECNanofluids/PECBasefluid ) values than (GNPs-COOH@DW), such as 1.17 for 0.025 wt.%, 1.19 for 0.05 
wt.% and 1.26 for 0.1 wt.%. Meanwhile, the value of ( PECNanofluids/PECBasefluid ) using (GNPs-COOH@
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Figure 13.   Friction factor of (45° and 90° helix angles) relative to plain pipe versus Reynolds numbers for 
different nanofluids.
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Figure 14.   Pressure loss of (45° and 90° helix angles) relative to plain pipe versus Reynolds numbers for 
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DW) nanofluids was 1.02 for 0.025 wt.%, 1.05 for 0.05 wt.% and 1.02 for 0.1 wt.%. Moreover, at Re = 11,000, 
0.1 wt.%-GNPs@SDBS shows the higher ( PECTwisted/PECPlain ) value, such as 1.25 for 45° helix angle and 
1.27 for 90° helix angle.

Data availability
All the data generated or analyzed during the current study are included in this published article.

Appendix A

Velocity streamlines of 45° and 90° heat exchangers using DW, 0.1wt.%-GNPs-SDBS@DW and 0.1wt.%-GNPs-
COOH@DW at Re = 7000.
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Appendix B

Velocity contours of 45° and 90° heat exchangers using DW, 0.1wt.%-GNPs-SDBS@DW and 0.1wt.%-GNPs-
COOH@DW at Re = 7000.
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